scholarly journals The Strengthening Relationship between ENSO and Northeast Monsoon Rainfall over Sri Lanka and Southern India

2006 ◽  
Vol 19 (8) ◽  
pp. 1567-1575 ◽  
Author(s):  
Lareef Zubair ◽  
C. F. Ropelewski

Abstract Recently, it was reported that the relationship of the Indian southwest monsoon rainfall with El Niño–Southern Oscillation (ENSO) has weakened since around 1980. Here, it is reported that in contrast, the relationship between ENSO and the northeast monsoon (NEM) in south peninsular India and Sri Lanka from October to December has not weakened. The mean circulation associated with ENSO over this region during October to December does not show the weakening evident in the summer and indeed is modestly intensified so as to augment convection. The intensification of the ENSO–NEM rainfall relationship is modest and within the historical record but stands in contrast to the weakening relationship in summer. The intensification of the circulation is consistent with the warming of surface temperatures over the tropical Indian Ocean in recent decades. There is modestly intensified convection over the Indian Ocean, strengthening of the circulation associated with ENSO (Walker circulation), and enhanced rainfall during El Niño episodes in a manner consistent with an augmented ENSO–NEM relationship.

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1605
Author(s):  
Mary T. Kayano ◽  
Wilmar L. Cerón ◽  
Rita V. Andreoli ◽  
Rodrigo A. F. Souza ◽  
Itamara P. Souza

Contrasting effects of the tropical Indian and Pacific Oceans on the atmospheric circulation and rainfall interannual variations over South America during southern winter are assessed considering the effects of the warm Indian Ocean basin-wide (IOBW) and El Niño (EN) events, and of the cold IOBW and La Niña events, which are represented by sea surface temperature-based indices. Analyses are undertaken using total and partial correlations. When the effects of the two warm events are isolated from each other, the contrasts between the associated rainfall anomalies in most of South America become accentuated. In particular, EN relates to anomalous wet conditions, and the warm IOBW event to opposite conditions in extensive areas of the 5° S–25° S band. These effects in the 5° S–15° S sector are due to the anomalous regional Hadley cells, with rising motions in this band for the EN and sinking motions for the warm IOBW event. Meanwhile, in subtropical South America, the opposite effects of the EN and warm IOBW seem to be due to the presence of anomalous anticyclone and cyclone and associated moisture transport, respectively. These opposite effects of the warm IOBW and EN events on the rainfall in part of central South America might explain the weak rainfall relation in this region to the El Niño–Southern Oscillation (ENSO). Our results emphasize the important role of the tropical Indian Ocean in the South American climate and environment during southern winter.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1437
Author(s):  
Mary T. Kayano ◽  
Wilmar L. Cerón ◽  
Rita V. Andreoli ◽  
Rodrigo A. F. Souza ◽  
Itamara P. Souza ◽  
...  

This paper examines the effects of the tropical Pacific Ocean (TPO) and Indian Ocean Dipole (IOD) modes in the interannual variations of austral spring rainfall over South America (SA). The TPO mode refers to the El Niño-Southern Oscillation (ENSO). The isolated effects between IOD and TPO were estimated, events were chosen from the residual TPO (R-TPO) or residual IOD (R-IOD), and the IOD (TPO) effects for the R-TPO (R-IOD) composites were removed from the variables. One relevant result was the nonlinear precipitation response to R-TPO and R-IOD. This feature was accentuated for the R-IOD composites. The positive R-IOD composite showed significant negative precipitation anomalies along equatorial SA east of 55° W and in subtropical western SA, and showed positive anomalies in northwestern SA and central Brazil. The negative R-IOD composite indicated significant positive precipitation anomalies in northwestern Amazon, central–eastern Brazil north of 20° S, and western subtropical SA, and negative anomalies were found in western SA south of 30° S. This nonlinearity was likely due to the distinct atmospheric circulation responses to the anomalous heating sources located in longitudinally distinct regions: the western tropical Indian Ocean and areas neighboring Indonesia. The results obtained in this study might be relevant for climate monitoring and modeling studies.


2018 ◽  
Vol 32 (1) ◽  
pp. 231-249 ◽  
Author(s):  
Agniv Sengupta ◽  
Sumant Nigam

Abstract The northeast monsoon (NEM) brings the bulk of annual rainfall to southeastern peninsular India, Sri Lanka, and the neighboring Southeast Asian countries. This October–December monsoon is referred to as the winter monsoon in this region. In contrast, the southwest summer monsoon brings bountiful rainfall to the Indo-Gangetic Plain. The winter monsoon region is objectively demarcated from analysis of the timing of peak monthly rainfall. Because of the region’s complex terrain, in situ precipitation datasets are assessed using high-spatiotemporal-resolution Tropical Rainfall Measuring Mission (TRMM) rainfall estimates, prior to their use in monsoon evolution, variability, and trend analyses. The Global Precipitation Climatology Center’s in situ analysis showed the least bias from TRMM. El Niño–Southern Oscillation’s (ENSO) impact on NEM rainfall is shown to be significant, leading to stronger NEM rainfall over southeastern peninsular India and Sri Lanka but diminished rainfall over Thailand, Vietnam, and the Philippines. The impact varies subseasonally, being weak in October and strong in November. The positive anomalies over peninsular India are generated by anomalous anticyclonic flow centered over the Bay of Bengal, which is forced by an El Niño–related reduction in deep convection over the Maritime Continent. The historical twentieth-century climate simulations informing the Intergovernmental Panel on Climate Change’s Fifth Assessment (IPCC-AR5) show varied deficiencies in the NEM rainfall distribution and a markedly weaker (and often unrealistic) ENSO–NEM rainfall relationship.


2010 ◽  
Vol 23 (19) ◽  
pp. 5294-5304 ◽  
Author(s):  
Gang Huang ◽  
Kaiming Hu ◽  
Shang-Ping Xie

Abstract The correlation of northwest (NW) Pacific climate anomalies during summer with El Niño–Southern Oscillation (ENSO) in the preceding winter strengthens in the mid-1970s and remains high. This study investigates the hypothesis that the tropical Indian Ocean (TIO) response to ENSO is key to this interdecadal change, using a 21-member ensemble simulation with the Community Atmosphere Model, version 3 (CAM3) forced by the observed history of sea surface temperature (SST) for 1950–2000. In the model hindcast, the TIO influence on the summer NW Pacific strengthens in the mid-1970s, and the strengthened TIO teleconnection coincides with an intensification of summer SST variability over the TIO. This result is corroborated by the fact the model’s skills in simulating NW Pacific climate anomalies during summer increase after the 1970s shift. During late spring to early summer, El Niño–induced TIO warming decays rapidly for the epoch prior to the 1970s shift but grows and persists through summer for the epoch occurring after it. This difference in the evolution of the TIO warming determines the strength of the TIO teleconnection to the NW Pacific in the subsequent summer. An antisymmetric wind pattern develops in spring across the equator over the TIO, and the associated northeasterly anomalies aid the summer warming over the north Indian Ocean by opposing the prevailing southwest monsoon. In the model, this antisymmetric spring wind pattern is well developed after but absent before the 1970s shift.


2013 ◽  
Vol 26 (18) ◽  
pp. 7240-7266 ◽  
Author(s):  
Yan Du ◽  
Shang-Ping Xie ◽  
Ya-Li Yang ◽  
Xiao-Tong Zheng ◽  
Lin Liu ◽  
...  

Abstract This study evaluates the simulation of the Indian Ocean Basin (IOB) mode and relevant physical processes in models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). Historical runs from 20 CMIP5 models are available for the analysis. They reproduce the IOB mode and its close relationship to El Niño–Southern Oscillation (ENSO). Half of the models capture key IOB processes: a downwelling oceanic Rossby wave in the southern tropical Indian Ocean (TIO) precedes the IOB development in boreal fall and triggers an antisymmetric wind anomaly pattern across the equator in the following spring. The anomalous wind pattern induces a second warming in the north Indian Ocean (NIO) through summer and sustains anticyclonic wind anomalies in the northwest Pacific by radiating a warm tropospheric Kelvin wave. The second warming in the NIO is indicative of ocean–atmosphere interaction in the interior TIO. More than half of the models display a double peak in NIO warming, as observed following El Niño, while the rest show only one winter peak. The intermodel diversity in the characteristics of the IOB mode seems related to the thermocline adjustment in the south TIO to ENSO-induced wind variations. Almost all the models show multidecadal variations in IOB variance, possibly modulated by ENSO.


2015 ◽  
Vol 28 (8) ◽  
pp. 3073-3092 ◽  
Author(s):  
Feiyan Guo ◽  
Qinyu Liu ◽  
S. Sun ◽  
Jianling Yang

Abstract Using observational data and phase 5 of the Coupled Model Intercomparison Project (CMIP5) model outputs [the preindustrial (PI) control run of the Community Climate System Model, version 4 (CCSM4) and historical simulations of 17 CMIP5 models], Indian Ocean dipoles (IODs) with a peak in fall are categorized into three types. The first type is closely related to the development phase of El Niño/La Niña. The second type evolves from the basinwide warming (cooling) in the tropical Indian Ocean (IO), usually occurring in the year following El Niño (La Niña). The third type is independent of El Niño and La Niña. The dominant trigger condition for the first (third) type of IOD is the anomalous Walker circulation (anomalous cross-equatorial flow); the anomalous zonal sea surface temperature (SST) gradient in the tropical IO is the trigger condition for the second type. The occurrence of anomalous ocean Rossby waves during the forming stage of IO basinwide mode and their effect on SST in the southwestern IO during winter and spring are critical for early development of the second type of IOD. Although most models simulate a stronger El Niño–Southern Oscillation and IOD compared to the observations, this does not influence the phase-locking and classification of the IOD peaking in the fall.


2020 ◽  
Author(s):  
Nining Sari Ningsih ◽  
Sholihati Lathifa Sakina ◽  
Raden Dwi Susanto ◽  
Farrah Hanifah

Abstract. Zonal current characteristics in the Southeastern Tropical Indian Ocean (SETIO) adjacent to the southern Sumatra-Java coasts have been studied using 64 years (1950–2013) data derived from simulated results of a 1/8° global version of the HYbrid Coordinate Ocean Model (HYCOM). This study has revealed distinctive features of zonal currents in the South Java Current (SJC) region, the Indonesian Throughflow (ITF)/South Equatorial Current (SEC) region, and the transition zone between the SJC and ITF/SEC regions. Empirical orthogonal function (EOF) analysis is applied to investigate explained variance of the current data and give results for almost 95–98 % of total variance. The first temporal mode of EOF is then investigated by using ensemble empirical mode decomposition (EEMD) for distinguishing the signals. The EEMD analysis shows that zonal currents in the SETIO vary considerably from intraseasonal to interannual timescales. In the SJC region, the zonal currents are consecutively dominated by semiannual (0.140 power/year), intraseasonal (0.070 power/year), and annual (0.038 power/year) signals, while semiannual (0.135 power/year) and intraseasonal (0.033 power/year) signals with pronounced interannual variations (0.012 power/year) of current appear consecutively to be dominant modes of variability in the transition zone between the SJC and ITF/SEC regions. In contrast, there exist dominant interannual signal (0.017 power/year) with prominent intraseasonal variability (0.012 power/year) of the current in the ITF/SEC region. In response to El Niño–Southern Oscillation (ENSO) event, El Niño (La Niña) events are favourable for an eastward (westward) zonal current. Meanwhile, an eastward (westward) anomaly of the current exists during negative (positive) Indian Ocean Dipole (IOD), which is associated with the presence of anomalous surface winds over the study area during those events. This work may contribute to further understanding of the variability of zonal current characteristics in the SETIO both in space and time as well as identification of its dominant time scales.


Author(s):  
Candra Saputra ◽  
I Wayan Arthana ◽  
I Gede Hendrawan

The aim of this research is to know the relationship between lemuru fish catch to Sea Surface Temperature (SST), El-Nino Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) phenomenon in Bali Strait. The results showed, that in the period 2007 – 2016. fluctuations of catches lemuru tends to decline. Sea Surface Temperature (SST) distribution with the lowest temperature 25,28oC at 24,53oC - 27,16oC and the highest temperature is 29,31oC in the range of 28,730C – 30,490C. The lowest temperature occurred in July - September while the highest temperature occurred in January - April. Based on the calculation there is a linkage and relationship between catch and SST as shown on the value of determination and correlation reached 50,0% and 70,73%. Most of the catches occurred in the west season and then the transition II, transition I and East Season. The relationship of ENSO phenomenon to the catch during the El-Nino phase of lemuru catch will increase while in the phase of La-Nina the catch of lemuru will decrease, because time of El-Nino phase of the sea surface temperature (SST) relative low which results in the chlorophyll-a mean case which is a food sources of lemuru fish. Based on Trenberth's theory, (1997), the rise and fall of the ENSO Index of less than six months is not stated in ENSO. From the calculation results during the research of 2007 - 2016 happened three times ENSO phenomenon that is in 2009, 2010 and 2015. At the time of the IOD phenomenon, the IOD (+) phase will result in a decrease in catch while the normal IOD phase and (-) will increase the catch. From the results of this study can also be observed, in the year 2007 - 2011 phenomenon ENSO and IOD have a strong influence on the catch while in the year 2012 - 2016 the influence of the phenomenon of ENSO and IOD has no strong influence caused by the quantity of lemuru fish that have been over exploitation that resulted in the current Bali Strait on Over Fishing status.   Keywords : Fish Catch; El-Nino Southern Oscillation (ENSO); Indian Ocean                    Dipole (IOD)


2015 ◽  
Vol 28 (12) ◽  
pp. 4743-4752 ◽  
Author(s):  
In-Sik Kang ◽  
Irfan Ur Rashid ◽  
Fred Kucharski ◽  
Mansour Almazroui ◽  
Abdulrahman K. Alkhalaf

Abstract Multidecadal variations in the relationship between El Niño–Southern Oscillation (ENSO) and the Arabian Peninsula rainfall are investigated using observed data for the last 60 years and various atmospheric general circulation model (AGCM) experiments. The wet season in the Arabian Peninsula from November to April was considered. The 6-month averaged Arabian rainfall was negatively correlated with ENSO for an earlier 30-yr period from 1950 to 1979 and positively correlated to ENSO for a more recent period from 1981 to 2010. The multidecadal variations can be attributed to the variations in Indian Ocean SST anomalies accompanied by ENSO. In the early 30-yr period, ENSO accompanied relatively large SST anomalies in the Indian Ocean, whereas in the recent 30-yr period it accompanied relatively small SST anomalies in the Indian Ocean. The atmospheric anomalies in the Arabian region during ENSO are combined responses to the Pacific and Indian Ocean SST anomalies, which offset each other during ENSO. The recent El Niño events accompanied negative 200-hPa geopotential height (GH) anomalies over the Arabian region, mainly forced by the Pacific SST anomalies, resulting in an increase of precipitation over the region. In contrast, in the early 30-yr period, Indian Ocean SST anomalies played a dominant role in the atmospheric responses over the Arabian region during ENSO, and the negative GH anomalies and more precipitation over the Arabian region were mainly forced by the negative SST anomalies over the Indian Ocean, which appeared during La Niña. These observed findings are confirmed by various AGCM experiments.


Sign in / Sign up

Export Citation Format

Share Document