Inter-comparison of long-term wave power potential in the Black Sea based on the SWAN wave model forced with two different wind fields

2021 ◽  
Vol 93 ◽  
pp. 101192
Author(s):  
Fulya Islek ◽  
Yalcin Yuksel
2017 ◽  
Vol 130 ◽  
pp. 482-497 ◽  
Author(s):  
Adem Akpınar ◽  
Bilal Bingölbali ◽  
Gerbrant Ph. Van Vledder

Water ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 924 ◽  
Author(s):  
Liliana Rusu ◽  
Alina Raileanu ◽  
Florin Onea

The aim of the present work is to assess the wind and wave climate in the Black Sea while considering various data sources. A special attention is given to the areas with higher navigation traffic. Thus, the results are analyzed for the sites located close to the main harbors and also along the major trading routes. The wind conditions were evaluated considering two different data sets, the reanalysis data provided by NCEP-CFSR (U.S. National Centers for Environmental Prediction-Climate Forecast System Reanalysis) and the hindcast results given by a Regional Climate Model (RCM) that were retrieved from EURO-CORDEX (European Domain-Coordinated Regional Climate Downscaling Experiment). For the waves, there were considered the results coming from simulations with the SWAN (Simulating Wave Nearshore) model, forced with the above-mentioned two different wind fields. Based on these results, it can be mentioned that the offshore sites seem to show the best correlation between the two datasets for both wind and waves. As regards the nearshore sites, there is a good agreement between the average values of the wind data that are provided by the different datasets, except for the points located in the southern part of the Black Sea. The same trends noticed for the average values remain also valid for the extreme values. Finally, it can be concluded that the results obtained in this study are useful for the evaluation of the wind and wave climate in the Black Sea. Also, they give a more comprehensive picture on how well the wind field provided by the Regional Climate Model, and the wave model forced with this wind, can represent the features of a complex marine environment as the Black Sea is.


Author(s):  
Gerbrant van Vledder ◽  
Adem Akpinar

The swell climate of the Black Sea has been determined using a long-term 31-year wave hindcast with the third-generation spectral wave model SWAN in combination with spectral partitioning. This technique enables decomposing wave spectra into individual wave systems representing wind seas or swells and computing integral wave parameters of each partition. Results are presented of the partition technique and of spatial and seasonal characteristics of wind sea and swell systems. In addition, the average amount of swell energy and the occurrence probability of dangerous crossing sea states are determined.


Author(s):  
Bilal Bingölbali ◽  
Adem Akpınar ◽  
Gerbrant Van Vledder

This study aims to assess wave energy potential and its long-term spatial and temporal characteristics in the Black Sea within the TUBITAK research project (Akpınar et al., 2015). With this purpose, a wave model (SWAN model version 41.01 driven by the CFSR winds) over the entire Black Sea was constructed. The model was calibrated using buoy data from 1996 at three offshore locations (Gelendzhik, Hopa, and Sinop) obtained within NATO TU-WAVES Project. The calibrated model was also validated using buoy data unused in calibration at five locations (Gelendzhik, Hopa, Gloria, Filyos, and Karaburun). Using this model a database including many of integral wave parameters (such as Hm0, Tm-10 etc.) was produced. Long-term variability of wave energy in the Black Sea basin over a period of 31 years was determined. Finally, hot-spot areas for harvesting wave energy in the Black Sea were identified.


2015 ◽  
Vol 53 ◽  
pp. 161-178 ◽  
Author(s):  
Gerbrant Ph. Van Vledder ◽  
Adem Akpınar

Author(s):  
Fulya Islek ◽  
Yalcin Yuksel ◽  
Cihan Sahin

The wind and wave climate over the Black Sea were investigated by providing extensive datasets covering the last 40 years (1979-2018). Wind characteristics over the Black Sea were evaluated by using two well-known wind fields (i.e., ECMWF ERA-Interim and NCEP/CFSR). Wave simulations were generated from the MIKE 21 SW model forcing with two wind datasets. The possible effect of the long-term variability on the wind and wave characteristics over the Black Sea was discussed in the context of climate change.


2019 ◽  
Vol 11 (3) ◽  
pp. 562 ◽  
Author(s):  
Adem Akpınar ◽  
Halid Jafali ◽  
Eugen Rusu

This paper aims to examine the temporal variation of wave energy flux in the hotspot areas of the Black Sea. For this purpose, a 31-year long-term wave dataset produced by using a three-layered nested modelling system was used. Temporal variations of wave energy were determined at hourly, monthly, seasonal, and yearly basis at seventeen stations. Based on the results obtained, it can be concluded that the stations have very low fluctuations in mean wave power during the day. Mean wave power in the summer months shows a low difference between the stations, but in the winter months, there is a higher difference in wave power between the stations. This difference is more at the stations in the southwestern part of the Black Sea and much lower in the eastern Black Sea stations around Sinop, being in the middle of the southern coast of the Black Sea. In addition, it is concluded that mean wave energy flux presents a decreasing trend at all stations, but maximum wave power offers an increasing trend at most of the stations.


2019 ◽  
Vol 59 (6) ◽  
pp. 1008-1015
Author(s):  
A. D. Gubanova ◽  
O. A. Garbazey ◽  
D. A. Altukhov ◽  
V. S. Mukhanov ◽  
E. V. Popova

Long-term (20032014) routine observations of zooplankton in Sevastopol Bay (the Black Sea) have allowed the naturalization of the invasive copepod Oithona davisae to be studied in the Black Sea coastal waters. Inter-annual and seasonal variability of the species and their impact on the native copepod community have been analyzed. The invasion of O. davisae and their undoubted dominance in terms of abundance were shown to alter the community structure but, at the same time, the abundances of the native species did not decrease, excepting the Black Sea earlier invader Acartia tonsa. A significant decline in A. tonsa numbers over the stages of O. davisae establishment and naturalization provided evidence of competition between the species. O. davisae have been demonstrated to gain competitive advantage over A. tonsa, that ensured their fast dispersal in the Black Sea, acclimatization in the new habitat and the successful competition over native species.


Sign in / Sign up

Export Citation Format

Share Document