scholarly journals Temporal Variation of the Wave Energy Flux in Hotspot Areas of the Black Sea

2019 ◽  
Vol 11 (3) ◽  
pp. 562 ◽  
Author(s):  
Adem Akpınar ◽  
Halid Jafali ◽  
Eugen Rusu

This paper aims to examine the temporal variation of wave energy flux in the hotspot areas of the Black Sea. For this purpose, a 31-year long-term wave dataset produced by using a three-layered nested modelling system was used. Temporal variations of wave energy were determined at hourly, monthly, seasonal, and yearly basis at seventeen stations. Based on the results obtained, it can be concluded that the stations have very low fluctuations in mean wave power during the day. Mean wave power in the summer months shows a low difference between the stations, but in the winter months, there is a higher difference in wave power between the stations. This difference is more at the stations in the southwestern part of the Black Sea and much lower in the eastern Black Sea stations around Sinop, being in the middle of the southern coast of the Black Sea. In addition, it is concluded that mean wave energy flux presents a decreasing trend at all stations, but maximum wave power offers an increasing trend at most of the stations.

Author(s):  
Bilal Bingölbali ◽  
Adem Akpınar ◽  
Gerbrant Van Vledder

This study aims to assess wave energy potential and its long-term spatial and temporal characteristics in the Black Sea within the TUBITAK research project (Akpınar et al., 2015). With this purpose, a wave model (SWAN model version 41.01 driven by the CFSR winds) over the entire Black Sea was constructed. The model was calibrated using buoy data from 1996 at three offshore locations (Gelendzhik, Hopa, and Sinop) obtained within NATO TU-WAVES Project. The calibrated model was also validated using buoy data unused in calibration at five locations (Gelendzhik, Hopa, Gloria, Filyos, and Karaburun). Using this model a database including many of integral wave parameters (such as Hm0, Tm-10 etc.) was produced. Long-term variability of wave energy in the Black Sea basin over a period of 31 years was determined. Finally, hot-spot areas for harvesting wave energy in the Black Sea were identified.


2017 ◽  
Vol 130 ◽  
pp. 482-497 ◽  
Author(s):  
Adem Akpınar ◽  
Bilal Bingölbali ◽  
Gerbrant Ph. Van Vledder

2020 ◽  
Vol 173 ◽  
pp. 01001
Author(s):  
Ajab Gul Majidi ◽  
Bilal Bingölbali ◽  
Adem Akpınar ◽  
Eugen Rusu

The main objective of this study is to identify and compare wave power sources in the high potential areas in nearshore and shallow water regions of the Black Sea. To achieve the goal, 23 locations were selected on two parallel lines around 5 m (10 sites) and around 25 m (13 sites) depth along the shoreline. The data needed to do the required analyzes at these locations were produced by using the calibrated nested layered 31-year wave hindcast SWAN model, which is operated between 1979-2009 with CFSR winds. The wave data were collected at a 2-hour time resolution for the sub-grid domains (SD3, SD2, and SD1) developed for the vicinity of Karaburun, Filyos, and Sinop coasts. HeaveBuoy, Oyster, Seabased AB, WaveDragon, WaveStar, Oyster2, and SSG, the most common known wave energy converters, were evaluated in the analysis. To ensure a more comprehensive analysis of the geographic variation of the predicted electrical power for each considered wave energy converter system, dimensionless normalized wave power and efficiency index were calculated separately for each wave energy converter devices at each location. From the results, it is recognized that generally, all the WEC systems performances are decreasing from Karaburun to Sinop while FB1 (13 m depth) the lowest, and KA2 (25 m depth) has the highest wave power capability. The most and the least energetic years were 1998 and 1989, repectively.


2019 ◽  
Vol 59 (6) ◽  
pp. 1008-1015
Author(s):  
A. D. Gubanova ◽  
O. A. Garbazey ◽  
D. A. Altukhov ◽  
V. S. Mukhanov ◽  
E. V. Popova

Long-term (20032014) routine observations of zooplankton in Sevastopol Bay (the Black Sea) have allowed the naturalization of the invasive copepod Oithona davisae to be studied in the Black Sea coastal waters. Inter-annual and seasonal variability of the species and their impact on the native copepod community have been analyzed. The invasion of O. davisae and their undoubted dominance in terms of abundance were shown to alter the community structure but, at the same time, the abundances of the native species did not decrease, excepting the Black Sea earlier invader Acartia tonsa. A significant decline in A. tonsa numbers over the stages of O. davisae establishment and naturalization provided evidence of competition between the species. O. davisae have been demonstrated to gain competitive advantage over A. tonsa, that ensured their fast dispersal in the Black Sea, acclimatization in the new habitat and the successful competition over native species.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 460
Author(s):  
Takvor H. Soukissian ◽  
Flora E. Karathanasi

In the context of wave resource assessment, the description of wave climate is usually confined to significant wave height and energy period. However, the accurate joint description of both linear and directional wave energy characteristics is essential for the proper and detailed optimization of wave energy converters. In this work, the joint probabilistic description of wave energy flux and wave direction is performed and evaluated. Parametric univariate models are implemented for the description of wave energy flux and wave direction. For wave energy flux, conventional, and mixture distributions are examined while for wave direction proven and efficient finite mixtures of von Mises distributions are used. The bivariate modelling is based on the implementation of the Johnson–Wehrly model. The examined models are applied on long-term measured wave data at three offshore locations in Greece and hindcast numerical wave model data at three locations in the western Mediterranean, the North Sea, and the North Atlantic Ocean. A global criterion that combines five individual goodness-of-fit criteria into a single expression is used to evaluate the performance of bivariate models. From the optimum bivariate model, the expected wave energy flux as function of wave direction and the distribution of wave energy flux for the mean and most probable wave directions are also obtained.


Sign in / Sign up

Export Citation Format

Share Document