The widespread occurrence of low-angle normal faults in a rift setting: Review of examples from Thailand, and implications for their origin and evolution

2014 ◽  
Vol 133 ◽  
pp. 18-42 ◽  
Author(s):  
C.K. Morley
2020 ◽  
Author(s):  
Costanza Rossi ◽  
Paola Cianfarra ◽  
Francesco Salvini

<p>The spiral troughs of the North Polar Layered deposits on Mars are deep depressions that dissect the Planum Boreum ice cap. These are enigmatic structures whose puzzling origin is still under debate. Advanced hypotheses on their genesis and evolution range between erosional to structural scenario. In this work, a double approach was followed to explore the structural/tectonic origin of the spiral troughs by means of Hybrid Cellular Automata (HCA) numerical modelling and lineament domain analysis. The SHARAD profile data were used to replicate the ice internal layering architecture associated to buried troughs in Gemina Lingula. Analysis of the lineament domains automatically detected at the ice surface from satellite images of the Mars Orbiter Camera strengthened the structural/tectonic interpretation of their origin and evolution. Similar, twofold approach was used for the investigation of a terrestrial analog identified in the Antarctic ice sheet. It presents at depth blind structures recognized as fractures/faults produced by ice sheet dynamics. Radargrams of Operation IceBridge mission and images from Sentinel-2 were used to produce a tectonic model that was in turn compared with the Planum Boreum one. Obtained results, and their comparison, show that the troughs of Gemina Lingula result from the activity of low-angle normal faults with listric geometry. The activity of listric faults is modelled and compared with the antarctic analog. At the surface the detected lineament domains confirm the tectonic setting by tracing the buried trough/fault orientations. The proposed tectonic model refers to extensional regime characterized by the presence of a deep detachment connecting the troughs at depth. This represents an internal ductile layer placed at depth greater than 1000 m whose kinematics induces the troughs/faults deformation. The extensional tectonics developed in Planum Boreum is possibly related to the ice cap collapse that induces internal dynamics. In this way, katabatic winds play a secondary role by maintaining at the surface the troughs nearly orthogonal to their directions.</p>


2018 ◽  
Vol 45 (3) ◽  
pp. 318 ◽  
Author(s):  
Jorge G. Lozano ◽  
Alejandro Tassone ◽  
Emanuele Lodolo ◽  
Marco Menichetti ◽  
María E. Cerredo ◽  
...  

Lago Yehuin, a WNW-ESE elongated basin located in the outer fold-and-thrust belt of the Fuegian Andes, occupies a compartmented structural depression originated along a segment of the left-lateral Lago Deseado fault system. This paper describes the first geophysical survey performed within the lake. New acquired high-resolution single-channel seismic data, integrated with geological information in the surroundings of the Lago Yehuin, allowed to: (i) produce a complete bathymetric map of the lake, (ii) reconstruct the basement surface of the lake, and (iii) analyze the geometry, distribution, and thickness of the sedimentary infill. Two sub-basins were recognized within Lago Yehuin: A western sub-basin, 7.5 km long, with a maximum depth of 118 m; an eastern sub-basin, 7.2 km long with a maximum depth of 80 m. Both sub-basins are limited by a set of normal faults which overprint NE-verging thrusts. Three seismo-stratigraphic units have been identified in the seismic records: (1) a lower unit with wedged geometry interpreted as a mass flow deposits; (2) a thick (up to 120 m) intermediate unit of glacio-lacustrine nature and irregularly distributed in the Yehuin basin; (3) a thin (generally


2020 ◽  
Vol 177 (6) ◽  
pp. 1129-1148
Author(s):  
Leonardo Muniz Pichel ◽  
Christopher A.-L. Jackson

The Albian Gap is a uniquely large (up to 65 km wide and >450 km long), enigmatic salt-related structure in the Santos Basin, offshore Brazil. It is located near the basin margin and trends NE (i.e. subparallel to the Brazilian coastline). The gap is characterized by a near-complete absence of Albian strata above depleted Aptian salt. Its most remarkable feature is an equivalently large, equally enigmatic, basinward-dipping, supra-salt rollover that contains a post-Albian sedimentary succession that is up to 9 km thick. Owing to its unique geometry, size and counter-regional aspect, the origin and evolution of the Albian Gap has been the centre of debate for >25 years. This debate revolves around two competing models; that is, did it form as a result of thin-skinned (i.e. supra-salt) extension, or progradational loading and salt expulsion? The extension-driven model states that the Albian Gap (and overlying rollover) formed as a result of post-Albian gravity-driven extension accommodated by slip on a large, counter-regional, listric normal fault (the Cabo Frio Fault). Conversely, the expulsion-driven hypothesis states that the Albian Gap was established earlier, during the Albian, and that post-Albian deformation was controlled by differential loading, vertical subsidence and basinward salt expulsion in the absence of significant lateral extension. This study utilizes a large (c. 76 000 km2), dense (4–8 km line spacing), depth-migrated, 2D seismic dataset that fully covers and thus permits, for the first time, a detailed, quasi-3D structural analysis of the entire Albian Gap. In this study we focus on (1) the evolution of base-salt relief and the original salt thickness variations and (2) the geometry of the post-Albian rollover, and its related faults and salt structures. To constrain the kinematics of the Albian Gap, and how this relates to the evolution of the base-salt relief, we also apply novel structural restoration workflows that incorporate flexural isostasy, in addition to a detailed, sequential reconstruction of the intra-gap rollover sequences. Our results show that the geometry and kinematics of the Albian Gap vary along-strike, and that both post-Albian extension and expulsion play a significant role in its evolution. Basinward-dipping growth wedges, salt rollers and listric normal faults record extension, whereas sigmoidal wedges, halokinetic sequences and upturned near-diapir flaps, the latter two associated with large diapirs bounding the downdip edge of the gap, record basinward salt expulsion and inflation. Where the Albian Gap is relatively wide (>50 km), these processes alternate and operate at approximately equal proportions. Our results are consistent with the amount of basinward translation inferred from the analysis of ramp–syncline basins located downdip on the São Paulo Plateau. Our results seemingly reconcile one of the longest-running debates in salt tectonics, as well as having more general implications for understanding the regional kinematics and dynamics of salt-related structures in other salt basins, in particular the controls on the development of large, counter-regional faults.Supplementary material: Uninterpreted versions of the seismic sections are available at https://doi.org/10.6084/m9.figshare.c.5023088


2021 ◽  
pp. SP524-2021-88
Author(s):  
D. A. Paton ◽  
E. M. Mortimer ◽  
P. Markwick ◽  
J. Khan ◽  
A. Davids ◽  
...  

AbstractThe Diaz Marginal Ridge (DMR), on the southern transform margin of South Africa, is a bathymetric feature parallel to the Agulhas Falkland Fracture Zone (AFFZ) that has long been considered an archetype marginal ridge; and yet its origin and evolution remains unconstrained. Using recently acquired seismic data we present a new structural interpretation of the DMR and its association with the evolution of both the AFFZ and the Southern Outeniqua Basin. In contrast to previous scenarios invoking thermo-mechanical explanations for its evolution, we observe a more straightforward structural model in which the genesis of the DMR results from the structural inversion of a Jurassic rift basin. This inversion resulted in the progressive onlap of latest Valanginian-Hauterivian aged stratigraphic units, important for the formation of stratigraphic plays of the recent Brulpadda discovery.Paradoxically, this contraction is contemporaneous with renewed extension observed in the inboard normal faults. The orientation of the DMR and inboard structures have been demonstrated to be controlled by the underlying Cape Fold Belt (CFB) fabric. The onset of motion across the AFFZ shear system led to east-west orientated maximum stress and north-south orientated minimum stress. We propose this stress re-orientation resulted in strain partitioning across existing structures whereby in addition to strike-slip on the AFFZ there was coeval extension and contraction, the nature of which was determined by fault orientation. The fault orientation in turn was controlled by a change in orientation of the underlying CFB. Our model provides new insights into the interplay of changes in regional stress orientation with basement fabric and localised magmatism along an evolving transform. The application of horizontal strain partitioning can provide an explanation of similar features observed on other transform margins.


Author(s):  
D.F. Blake ◽  
LJ. Allamandola ◽  
G. Palmer ◽  
A. Pohorille

The natural history of the biogenic elements H, C, N, O, P and S in the cosmos is of great interest because it is these elements which comprise all life. Material ejected from stars (or pre-existing in the interstellar medium) is thought to condense into diffuse bodies of gravitationally bound gas and dust called cold interstellar molecular clouds. Current theories predict that within these clouds, at temperatures of 10-100° K, gases (primarily H2O, but including CO, CO2, CH3OH, NH3, and others) condense onto submicron silicate grains to form icy grain mantles. This interstellar ice represents the earliest and most primitive association of the biogenic elements. Within these multicomponent icy mantles, pre-biotic organic compounds are formed during exposure to UV radiation. It is thought that icy planetesimals (such as comets) within our solar system contain some pristine interstellar material, including ices, and may have (during the early bombardment of the solar system, ∼4 Ga) carried this material to Earth.Despite the widespread occurrence of astrophysical ices and their importance to pre-biotic organic evolution, few experimental data exist which address the relevant phase equilibria and possible structural states. A knowledge of the petrology of astrophysical ice analogs will allow scientists to more confidently interpret astronomical IR observations. Furthermore, the development and refinement of procedures for analyzing ices and other materials at cryogenic temperatures is critical to the study of materials returned from the proposed Rosetta comet nucleus and Mars sample return missions.


2000 ◽  
Vol 12 (3-4) ◽  
pp. 227-240 ◽  
Author(s):  
C. M. dePolo ◽  
J. G. Anderson
Keyword(s):  

1980 ◽  
Vol 35 (8) ◽  
pp. 774-774 ◽  
Author(s):  
Hendrika Vande Kemp
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document