mass flow deposits
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 8)

H-INDEX

16
(FIVE YEARS 1)

2022 ◽  
pp. 287-306
Author(s):  
Xiangbo Li ◽  
A.J. (Tom) van Loon ◽  
Zhanlong Yang ◽  
Yating Wang ◽  
Huaqing Liu ◽  
...  

2021 ◽  
Vol 9 (10) ◽  
pp. 1043
Author(s):  
Daniele Spatola ◽  
Attilio Sulli ◽  
Daniele Casalbore ◽  
Francesco Latino Chiocci

We present the results of an integrated geomorphological and seismo-stratigraphic study based on high resolution marine data acquired in the north-western Sicilian continental margin. We document for the first time five contourite drifts (marked as EM1a, EM2b, EM2, EM3a, and EM3b), located in the continental slope at depths between ca. 400 and 1500 m. EM1a,b have been interpreted as elongated mounded drifts. EM1a,b are ca. 3 km long, 1.3 km wide, and have a maximum thickness of 36 m in their center that thins northwards, while EM1b is smaller with a thickness up to 24 m. They are internally characterized by mounded seismic packages dominated by continuous and parallel reflectors. EM2 is located in the upper slope at a depth of ca. 1470 m, and it is ca. 9.3 km long, more than 3.9 km wide, and has a maximum thickness of ca. 65 m. It consists of an internal aggradational stacking pattern with elongated mounded packages of continuous, moderate to high amplitude seismic reflectors. EM2 is internally composed by a mix of contourite deposits (Holocene) interbedded with turbiditic and/or mass flow deposits. EM1a,b and EM2 are deposited at the top of an erosional truncation aged at 11.5 ka, so they mostly formed during the Holocene. EM3a,b are ca. 16 km long, more than 6.7 km wide, and have a thickness up to 350 m. Both EM2 and EM3a,b have been interpreted as sheeted drift due to their morphology and seismic features. The spatial distribution of the contourite drifts suggests that the drifts are likely generated by the interaction of the LIW, and deep Tyrrhenian water (TDW) on the seafloor, playing an important role in the shaping this continental margin since the late Pleistocene-Holocene. The results may help to understand the deep oceanic processes affecting the north-western Sicilian continental margin.


Sedimentology ◽  
2021 ◽  
Author(s):  
Aliz Zemeny ◽  
Jonathan Procter ◽  
Karoly Nemeth ◽  
Georg F. Zellmer ◽  
Anke V. Zernack ◽  
...  

2020 ◽  
Vol 298 (2) ◽  
pp. 165-176
Author(s):  
Maria Aleksandra Bitner ◽  
Alfred Uchman ◽  
Bruno Rattazzi

Four brachiopod species, i. e. Erymnaria bolcensis ( Massalongo , 1850), Gryphus cf. minor (Philippi, 1836), Terebratulina tenuistriata (Leymerie, 1846), and Megathiris detruncata (Gmelin, 1791) have been identified in the Oligocene deposits of NW Italy. The species G. cf. minor and T. tenuistriata dominate in the studied material. This is the first record of M. detruncata from the Oligocene of Italy, although it has been noted both from the Eocene and Miocene of Italy. The stratigraphic ranges of E. bolcensis and T. tenuistriata have been extended. The studied assemblage differs considerably from the majority of the Palaeogene and Neogene assemblages of Europe dominated by micromorphic megathyridids. Geological context and sedimentary features point to mass-flow deposits of fan deltas, indicating that the assemblage has been transported within the sediment down a slope.


Geology ◽  
2020 ◽  
Author(s):  
D.P. Le Heron ◽  
M.E. Busfield ◽  
C. Kettler

Dropstones of ice-rafted origin are typically cited as key cold-climate evidence in Cryogenian strata and, according to conventional wisdom, should not occur in postglacial, warm-water carbonates. In Namibia, the Chuos Formation (early Cryogenian) contains abundant dropstone-bearing intervals and striated clasts. It is capped by the Rasthof Formation, composed of laminites in its lower portion and microbial carbonates above. These laminites are locally found to contain pebble- and granule-sized lonestones in abundance. At the Omutirapo outcrop, meter-thick floatstone beds occur at the flanks of a Chuos paleovalley and are readily interpreted as mass-flow deposits. At Rasthof Farm, however, the clasts warp, deflect, and penetrate hundreds of carbonate laminations at both the outcrop and thin-section scale. We propose that these are dropstones, and we infer an ice-rafting mechanism. Evidence for vestigial glaciation concomitant with cap carbonate deposition thus merits a reappraisal of the depositional conditions of cap carbonates and their paleoclimatic significance.


2020 ◽  
Vol 113 (1) ◽  
pp. 59-70
Author(s):  
Daniel Paul Le Heron ◽  
Nicholas Eyles ◽  
Marie Elen Busfield

AbstractOne of the major issues in Neoproterozoic geology is the extent to which glaciations in the Cryogenian and Ediacaran periods were global in extent and synchronous or regional in extent and diachronous. A similarly outstanding concern is determining whether deposits are truly glacial, as opposed to gravitationally initiated mass flow deposits in the context of a rifting Rodinia supercontinent. In this paper, we present 115 publically available, quality-filtered chronostratigraphic constraints on the age and duration of Neoproterozoic glacial successions, and compare their palaeocontinental distribution. Depositional ages from North America (Laurentia) clearly support the idea of a substantial glacial epoch between about 720-660 Ma on this palaeocontinent but paradoxically, the majority of Australian glacial strata plot outside the previously proposed global time band for the eponymous Sturtian glaciation, with new dates from China also plotting in a time window previously thought to be an interglacial. For the early Cryogenian, the data permit either a short, sharp 2.4 Ma long global glaciation, or diachronous shifting of ice centres across the Rodinia palaeocontinent, implying regional rather than global ice covers and asynchronous glacial cycles. Thus, based on careful consideration of age constraints, we suggest that strata deposited in the ca. 720-660 Ma window in North America are better described as belonging to a Laurentian Neoproterozoic Glacial Interval (LNGI), given that use of the term Sturtian for a major Neoproterozoic glacial epoch can clearly no longer be justified. This finding is of fundamental importance for reconstructing the Neoproterozoic climate system because chronological constraints do not support the concept of a synchronous panglacial Snowball Earth. Diachroneity of the glacial record reflects underlying palaeotectonic and palaeogeographic controls on the timing of glaciation resulting from the progressive breakup of the Rodinian supercontinent.


2019 ◽  
Vol 89 (10) ◽  
pp. 875-889 ◽  
Author(s):  
Pierre Dietrich ◽  
Fulvio Franchi ◽  
Larona Setlhabi ◽  
Rose Prevec ◽  
Marion Bamford

ABSTRACT Along the easternmost edge of the Karoo–Kalahari Basin (KKB) of Botswana, the Toutswemogala Hill succession exposes a 30–50-m-thick suite of siliciclastic deposits interpreted by some as glaciogenic in origin tied to the Permo-Carboniferous Late Paleozoic Ice Age (LPIA). Six facies associations (FA) were recognized in this succession, resting unconformably on a highly uneven Archean gneissic basement, and consisting from base to top of: 1) clast-supported breccia made up of angular cobbles and boulders ubiquitously derived from the underlying basement, 2) well-bedded siltstones sealing or locally interdigitated with the underlying breccia, and bearing abundant remnants of Glossopteris sp. leaves, 3) a chaotic to faintly laminated matrix-supported diamictite bearing angular and subrounded clasts and tree logs attributed to the genus Megaporoxylon, 4) cross-bedded conglomerate bearing well-rounded quartz and clasts, 5) planar-laminated to ripple-laminated, poorly sorted, muddy sandstones showcasing dispersed mud chips that grade upward into 6) poorly sorted, cross-bedded coarse-grained sandstones displaying convolute beds and abundant imprints of unidentifiable tree logs. No evidence of glaciogenic processes have been found in this succession, in the form of either pavement or clasts striations. The breccia and diamictite are interpreted as scree and mass-flow deposits, respectively. Along with the age of the deposits, inferred from the plant debris (upper Carboniferous to lower Permian), the stratigraphic position of this sedimentary succession resting on the Archean basement suggests that it corresponds to the Dukwi Formation, a stratigraphic equivalent of the Dwyka Group in the Main Karoo Basin. This would explain the resemblance of the facies to those recovered at the base of the central Kalahari–Karoo Basin and in the neighboring Tuli, Ellisras, and Tshipise basins. The absence of diagnostic criteria for glacial processes in the studied succession raises the question of the extent, in both time and space, of the LPIA-related ice masses over southern Africa and particularly in southeastern Botswana. It is suggested here that during this glacial epoch, spatially restricted ice masses were confined in bedrock valleys (valley glaciers) in an uplifted setting otherwise characterized by non-glaciogenic processes, further strengthening the scenario of fragmented ice masses over southern Gondwana.


2018 ◽  
Vol 45 (3) ◽  
pp. 318 ◽  
Author(s):  
Jorge G. Lozano ◽  
Alejandro Tassone ◽  
Emanuele Lodolo ◽  
Marco Menichetti ◽  
María E. Cerredo ◽  
...  

Lago Yehuin, a WNW-ESE elongated basin located in the outer fold-and-thrust belt of the Fuegian Andes, occupies a compartmented structural depression originated along a segment of the left-lateral Lago Deseado fault system. This paper describes the first geophysical survey performed within the lake. New acquired high-resolution single-channel seismic data, integrated with geological information in the surroundings of the Lago Yehuin, allowed to: (i) produce a complete bathymetric map of the lake, (ii) reconstruct the basement surface of the lake, and (iii) analyze the geometry, distribution, and thickness of the sedimentary infill. Two sub-basins were recognized within Lago Yehuin: A western sub-basin, 7.5 km long, with a maximum depth of 118 m; an eastern sub-basin, 7.2 km long with a maximum depth of 80 m. Both sub-basins are limited by a set of normal faults which overprint NE-verging thrusts. Three seismo-stratigraphic units have been identified in the seismic records: (1) a lower unit with wedged geometry interpreted as a mass flow deposits; (2) a thick (up to 120 m) intermediate unit of glacio-lacustrine nature and irregularly distributed in the Yehuin basin; (3) a thin (generally


2017 ◽  
Vol 68 (5) ◽  
pp. 403-418 ◽  
Author(s):  
Ján Soták ◽  
Zuzana Pulišová ◽  
Dušan Plašienka ◽  
Viera Šimonová

Abstract The Súľov Conglomerates represent mass-transport deposits of the Súľov-Domaniža Basin. Their lithosomes are intercalated by claystones of late Thanetian (Zones P3 - P4), early Ypresian (Zones P5 - E2) and late Ypresian to early Lutetian (Zones E5 - E9) age. Claystone interbeds contain rich planktonic and agglutinated microfauna, implying deep-water environments of gravity-flow deposition. The basin was supplied by continental margin deposystems, and filled with submarine landslides, fault-scarp breccias, base-of-slope aprons, debris-flow lobes and distal fans of debrite and turbidite deposits. Synsedimentary tectonics of the Súľov-Domaniža Basin started in the late Thanetian - early Ypresian by normal faulting and disintegration of the orogenic wedge margin. Fault-related fissures were filled by carbonate bedrock breccias and banded crystalline calcite veins (onyxites). The subsidence accelerated during the Ypresian and early Lutetian by gravitational collapse and subcrustal tectonic erosion of the CWC plate. The basin subsided to lower bathyal up to abyssal depth along with downslope accumulation of mass-flow deposits. Tectonic inversion of the basin resulted from the Oligocene - early Miocene transpression (σ1 rotated from NW-SE to NNW-SSE), which changed to a transpressional regime during the Middle Miocene (σ1 rotated from NNE-SSW to NE-SW). Late Miocene tectonics were dominated by an extensional regime with σ3 axis in NNW-SSE orientation.


Sign in / Sign up

Export Citation Format

Share Document