scholarly journals Deep Convolutional Neural Networks Enable Discrimination of Heterogeneous Digital Pathology Images

EBioMedicine ◽  
2018 ◽  
Vol 27 ◽  
pp. 317-328 ◽  
Author(s):  
Pegah Khosravi ◽  
Ehsan Kazemi ◽  
Marcin Imielinski ◽  
Olivier Elemento ◽  
Iman Hajirasouliha
Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 256
Author(s):  
Francesco Ponzio ◽  
Gianvito Urgese ◽  
Elisa Ficarra ◽  
Santa Di Cataldo

Thanks to their capability to learn generalizable descriptors directly from images, deep Convolutional Neural Networks (CNNs) seem the ideal solution to most pattern recognition problems. On the other hand, to learn the image representation, CNNs need huge sets of annotated samples that are unfeasible in many every-day scenarios. This is the case, for example, of Computer-Aided Diagnosis (CAD) systems for digital pathology, where additional challenges are posed by the high variability of the cancerous tissue characteristics. In our experiments, state-of-the-art CNNs trained from scratch on histological images were less accurate and less robust to variability than a traditional machine learning framework, highlighting all the issues of fully training deep networks with limited data from real patients. To solve this problem, we designed and compared three transfer learning frameworks, leveraging CNNs pre-trained on non-medical images. This approach obtained very high accuracy, requiring much less computational resource for the training. Our findings demonstrate that transfer learning is a solution to the automated classification of histological samples and solves the problem of designing accurate and computationally-efficient CAD systems with limited training data.


2017 ◽  
Author(s):  
Pegah Khosravi ◽  
Ehsan Kazemi ◽  
Marcin Imielinski ◽  
Olivier Elemento ◽  
Iman Hajirasouliha

Pathological evaluation of tumor tissue is pivotal for diagnosis in cancer patients and automated image analysis approaches have great potential to increase precision of diagnosis and help reduce human error. In this study, we utilize various computational methods based on convolutional neural networks (CNN) and build a stand-alone pipeline to effectively classify different histopathology images across different types of cancer. In particular, we demonstrate the utility of our pipeline to discriminate between two subtypes of lung cancer, four biomarkers of bladder cancer, and five biomarkers of breast cancer. In addition, we apply our pipeline to discriminate among four immunohistochemistry (IHC) staining scores of bladder and breast cancers. Our classification pipeline utilizes a basic architecture of CNN, Google's Inceptions within three training strategies, and an ensemble of two state-of-the-art algorithms, Inception and ResNet. These strategies include training the last layer of Google's Inceptions, training the network from scratch, and fine-tunning the parameters for our data using two pre-trained version of Google's Inception architectures, Inception-V1 and Inception-V3. We demonstrate the power of deep learning approaches for identifying cancer subtypes, and the robustness of Google's Inceptions even in presence of extensive tumor heterogeneity. Our pipeline on average achieved accuracies of 100% , 92%, 95%, and 69% for discrimination of various cancer types, subtypes, biomarkers, and scores, respectively. Our pipeline and related documentation is freely available at https://github.com/ih-lab/CNN_Smoothie


2020 ◽  
Vol 2020 (10) ◽  
pp. 28-1-28-7 ◽  
Author(s):  
Kazuki Endo ◽  
Masayuki Tanaka ◽  
Masatoshi Okutomi

Classification of degraded images is very important in practice because images are usually degraded by compression, noise, blurring, etc. Nevertheless, most of the research in image classification only focuses on clean images without any degradation. Some papers have already proposed deep convolutional neural networks composed of an image restoration network and a classification network to classify degraded images. This paper proposes an alternative approach in which we use a degraded image and an additional degradation parameter for classification. The proposed classification network has two inputs which are the degraded image and the degradation parameter. The estimation network of degradation parameters is also incorporated if degradation parameters of degraded images are unknown. The experimental results showed that the proposed method outperforms a straightforward approach where the classification network is trained with degraded images only.


2019 ◽  
Vol 277 ◽  
pp. 02024 ◽  
Author(s):  
Lincan Li ◽  
Tong Jia ◽  
Tianqi Meng ◽  
Yizhe Liu

In this paper, an accurate two-stage deep learning method is proposed to detect vulnerable plaques in ultrasonic images of cardiovascular. Firstly, a Fully Convonutional Neural Network (FCN) named U-Net is used to segment the original Intravascular Optical Coherence Tomography (IVOCT) cardiovascular images. We experiment on different threshold values to find the best threshold for removing noise and background in the original images. Secondly, a modified Faster RCNN is adopted to do precise detection. The modified Faster R-CNN utilize six-scale anchors (122,162,322,642,1282,2562) instead of the conventional one scale or three scale approaches. First, we present three problems in cardiovascular vulnerable plaque diagnosis, then we demonstrate how our method solve these problems. The proposed method in this paper apply deep convolutional neural networks to the whole diagnostic procedure. Test results show the Recall rate, Precision rate, IoU (Intersection-over-Union) rate and Total score are 0.94, 0.885, 0.913 and 0.913 respectively, higher than the 1st team of CCCV2017 Cardiovascular OCT Vulnerable Plaque Detection Challenge. AP of the designed Faster RCNN is 83.4%, higher than conventional approaches which use one-scale or three-scale anchors. These results demonstrate the superior performance of our proposed method and the power of deep learning approaches in diagnose cardiovascular vulnerable plaques.


2020 ◽  
Vol 1712 ◽  
pp. 012015
Author(s):  
G. Geetha ◽  
T. Kirthigadevi ◽  
G.Godwin Ponsam ◽  
T. Karthik ◽  
M. Safa

Sign in / Sign up

Export Citation Format

Share Document