scholarly journals Longitudinal Strain Reflects Ventriculoarterial Coupling Rather Than Mere Contractility in Rat Models of Hemodynamic Overload–Induced Heart Failure

2020 ◽  
Vol 33 (10) ◽  
pp. 1264-1275.e4
Author(s):  
Mihály Ruppert ◽  
Bálint Károly Lakatos ◽  
Szilveszter Braun ◽  
Márton Tokodi ◽  
Christian Karime ◽  
...  

2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
BK Lakatos ◽  
M Ruppert ◽  
M Tokodi ◽  
A Olah ◽  
S Braun ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Speckle-tracking echocardiography (STE)-derived global longitudinal strain (GLS) is considered to be a sensitive marker of left ventricular (LV) function in a wide variety of cardiovascular diseases. Still, evidence suggests that GLS is significantly influenced by loading conditions. Myocardial work index (MWI) evaluates myocardial deformation in the context of afterload through the interpretation of strain in relation to instantaneous LV pressure. MWI may potentially overcome the limitations of mere strain calculation, and may better reflect cardiac contractility in hemodynamic overload states. Accordingly, our aim was to examine the relationship of GLS and MWI with load-independent markers of LV contractility in rat models of pressure- and volume overload-induced heart failure. Male Wistar rats underwent transverse aortic constriction (TAC; n = 12) to generate LV pressure overload, or aortocaval fistula (ACF; n = 12) was established to induce severe LV volume overload. In case of the control groups, sham procedures were performed (n = 12/12). Echocardiography loops were obtained to determine STE-derived GLS and global MWI. Pressure-volume analysis with transient occlusion of the inferior vena cava was carried out to calculate preload recruitable stroke work (PRSW), as a load-independent „gold-standard" parameter of LV contractility. GLS was mildly reduced in the ACF group (-13.2 ± 2.4 vs. -15.4 ± 2.0%, p < 0.05), while it was significantly lower in TAC group compared to controls (-7.0 ± 2.8 vs. -14.5 ± 2.5%; p < 0.001). In contrast with these findings, PRSW and also MWI were significantly reduced in ACF (58 ± 14 vs. 111 ± 40 mmHg; 1328 ± 411 vs. 1934 ± 308 mmHg%, both p < 0.01), however, they were comparable between TAC and the corresponding sham group (110 ± 26 vs. 116 ± 68 mmHg; 1687 ± 275 Hgmm% vs. 1537 ± 662 Hgmm%; both p = NS). In the pooled population, GLS did not show relationship with PRSW (r=-0.23; p = 0.12), while MWI showed significant correlation with it (r = 0.70; p < 0.001). GLS is significantly influenced by loading conditions, therefore, in case of severe pressure- or volume overload it may not be a reliable marker of LV contractility. In our rat model of pressure overload induced heart failure, contractility was maintained despite decreased GLS, while in the model of volume overload induced heart failure, GLS was maintained despite decreased contractility. MWI reflects contractility in hemodynamic overload states, therefore, it may be a more suitable marker of systolic function. Abstract Figure. Pressure-strain loops of the groups



2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
M Ruppert ◽  
B.K Lakatos ◽  
M Tokodi ◽  
C Karime ◽  
I Hizoh ◽  
...  

Abstract Background Two-dimensional (2D) speckle tracking echocardiography (STE)-derived myocardial strain parameters are sensitive markers of left ventricular (LV) systolic function. Novel findings suggest that the contractile state of the myocardium, afterload and preload are major determinants of STE measurements. However, the hypothesis that longitudinal strain expresses the interaction between contractility and loading conditions rather than contractility alone in hemodynamic overload-induced heart failure (HF) has not been tested. Purpose This study aimed to explore the connection between longitudinal strain and contractility, afterload and preload in rat models of pressure overload (PO)- and volume overload (VO)-induced heart failure (HF). Methods Pressure overload (PO)-induced HF was evoked by transverse aortic constriction ([TAC], n=14). Volume overload (VO)-induced HF was established by an aortocaval fistula ([ACF], n=12). Age-matched sham operated animals served as controls. Pressure-volume analysis was carried out to compute cardiac contractility (slope of end-systolic pressure-volume relationship [ESPVR]), afterload (arterial elastance [Ea]) and ventriculo-arterial coupling ([VAC] = Ea/ESPVR). Preload was evaluated by meridional end-diastolic wall stress (σend-diastolic). STE was performed to assess global longitudinal strain (GLS). Results GLS was impaired in both PO-induced HF (−5.9±0.6 vs. −12.9±0.5%, TAC vs Sham, P<0.001) and VO-evoked HF (−11.7±0.7 vs. −13.5±0.4%, ACF vs Sham, P=0.048). Hemodynamic measurements indicated that the TAC group presented with maintained ESPVR, increased Ea and enhanced σend-diastolic. In contrast, the ACF group was characterized by reduced ESPVR, decreased Ea and enhanced σend-diastolic. Ordinary least squares non-linear regression revealed that GLS was predominantly determined by afterload (Ea) in the TAC model and by contractility (ESPVR) in the ACF model. In accordance, GLS showed a strong correlation with Ea in case of PO-induced HF (R= 0.848, P<0.001) and with ESPVR in case of VO-evoked HF (R=−0.526; P=0.008), respectively. Furthermore, GLS also demonstrated strong correlation with VAC in both the TAC and the ACF models. Of particular interest, a robust correlation between VAC and GLS could also be detected in the entire study population (R= 0.654, P<0.001). Conclusion Both afterload and contractility define GLS. Hence, under conditions when both factors become altered, GLS reflects VAC. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): NVKP_16-1-2016-0017



2020 ◽  
pp. 13-17
Author(s):  
Dmitrii Aleksandrovich Lopyn ◽  
Stanislav Valerevich Rybchynskyi ◽  
Dmitrii Evgenevich Volkov

Currently the electrophysiological treatment options have been considered to be the most effective for many patients with arrhythmogenic cardiomyopathies, as well as in those with arrhythmias on the background of heart failure. Currently, the dependence of efficiency of the pacemakers on the location of the electrodes has been proven. In order to study the effect of a myocardial dysynchrony on the effectiveness of pacing depending on the location of the right ventricular electrode, an investigation has been performed. This study comprised the patients with a complete atrioventricular block, preserved ejection fraction of the left ventricle (more than 50 %), with no history of myocardial infarction, who were implanted with the two−chamber pacemaker. It has been established that the best results were achieved with a stimulation of the middle and lower septal zone of the right ventricle, the worst ones were obtained with a stimulation of its apex. It has been found that the dynamics of the magnitude of segmental strains and a global longitudinal strain coincided with the dynamics of other parameters of the pacemaker effectiveness, which indicated the pathogenetic value of myocardial dysynchrony in the progression of heart failure after implantation of the pacemaker. Therefore it could be concluded that the studying of myocardial mobility by determining a longitudinal strain for assessing the functional state of the myocardium and the effectiveness of pacing is highly advisable. It is emphasized that the use of the latest strains−dependent techniques for cardiac performance evaluation in the patients with bradyarrhythmia have a great potential to predict the development of chronic heart failure and to choose the optimal method of physiological stimulation of the heart. Key words: right ventricular lead, cardiac stimulation, myocardial dyssynchrony.



2021 ◽  
Vol 151 ◽  
pp. 86-92
Author(s):  
Ethan J. Rowin ◽  
Barry J. Maron ◽  
Sophie Wells ◽  
Austin Burrows ◽  
Christopher Firely ◽  
...  


2019 ◽  
Vol 32 (2) ◽  
pp. 317-318 ◽  
Author(s):  
Fawaz Alenezi ◽  
Andrew P. Ambrosy ◽  
Matthew Phelan ◽  
Karen Chiswell ◽  
Loai Abudaqa ◽  
...  


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Laura Houard ◽  
Mihaela S. Amzulescu ◽  
Geoffrey Colin ◽  
Helene Langet ◽  
Sebastian Militaru ◽  
...  

Background: Pulmonary transit time (PTT) from first-pass perfusion imaging is a novel parameter to evaluate hemodynamic congestion by cardiac magnetic resonance (cMR). We sought to evaluate the additional prognostic value of PTT in heart failure with reduced ejection fraction over other well-validated predictors of risk including the Meta-Analysis Global Group in Chronic Heart Failure risk score and ischemic cause. Methods: We prospectively followed 410 patients with chronic heart failure with reduced ejection fraction (61±13 years, left ventricular (LV) ejection fraction 24±7%) who underwent a clinical cMR to assess the prognostic value of PTT for a primary endpoint of overall mortality and secondary composite endpoint of cardiovascular death and heart failure hospitalization. Normal reference values of PTT were evaluated in a population of 40 asymptomatic volunteers free of cardiovascular disease. Results PTT was significantly increased in patients with heart failure with reduced ejection fraction as compared to controls (9±6 beats and 7±2 beats, respectively, P <0.001), and correlated not only with New York Heart Association class, cMR–LV and cMR–right ventricular (RV) volumes, cMR-RV and cMR-LV ejection fraction, and feature tracking global longitudinal strain, but also with cardiac output. Over 6-year median follow-up, 182 patients died and 200 reached the secondary endpoint. By multivariate Cox analysis, PTT was an independent and significant predictor of both endpoints after adjustment for Meta-Analysis Global Group in Chronic Heart Failure risk score and ischemic cause. Importantly in multivariable analysis, PTT in beats had significantly higher additional prognostic value to predict not only overall mortality (χ 2 to improve, 12.3; hazard ratio, 1.35 [95% CI, 1.16–1.58]; P <0.001) but also the secondary composite endpoints (χ 2 to improve=20.1; hazard ratio, 1.23 [95% CI, 1.21–1.60]; P <0.001) than cMR-LV ejection fraction, cMR-RV ejection fraction, LV–feature tracking global longitudinal strain, or RV–feature tracking global longitudinal strain. Importantly, PTT was independent and complementary to both pulmonary artery pressure and reduced RV ejection fraction<42% to predict overall mortality and secondary combined endpoints. Conclusions: Despite limitations in temporal resolution, PTT derived from first-pass perfusion imaging provides higher and independent prognostic information in heart failure with reduced ejection fraction than clinical and other cMR parameters, including LV and RV ejection fraction or feature tracking global longitudinal strain. Registration: URL: https://www.clinicaltrials.gov ; Unique identifier: NCT03969394.



Radiology ◽  
2022 ◽  
Vol 302 (1) ◽  
pp. E5-E5
Author(s):  
Jian He ◽  
Wenjing Yang ◽  
Weichun Wu ◽  
Shuang Li ◽  
Gang Yin ◽  
...  




Sign in / Sign up

Export Citation Format

Share Document