scholarly journals Myocardial work index better reflects contractility than longitudinal strain in rat models of pressure- and volume overload-induced heart failure

2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
BK Lakatos ◽  
M Ruppert ◽  
M Tokodi ◽  
A Olah ◽  
S Braun ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Speckle-tracking echocardiography (STE)-derived global longitudinal strain (GLS) is considered to be a sensitive marker of left ventricular (LV) function in a wide variety of cardiovascular diseases. Still, evidence suggests that GLS is significantly influenced by loading conditions. Myocardial work index (MWI) evaluates myocardial deformation in the context of afterload through the interpretation of strain in relation to instantaneous LV pressure. MWI may potentially overcome the limitations of mere strain calculation, and may better reflect cardiac contractility in hemodynamic overload states. Accordingly, our aim was to examine the relationship of GLS and MWI with load-independent markers of LV contractility in rat models of pressure- and volume overload-induced heart failure. Male Wistar rats underwent transverse aortic constriction (TAC; n = 12) to generate LV pressure overload, or aortocaval fistula (ACF; n = 12) was established to induce severe LV volume overload. In case of the control groups, sham procedures were performed (n = 12/12). Echocardiography loops were obtained to determine STE-derived GLS and global MWI. Pressure-volume analysis with transient occlusion of the inferior vena cava was carried out to calculate preload recruitable stroke work (PRSW), as a load-independent „gold-standard" parameter of LV contractility. GLS was mildly reduced in the ACF group (-13.2 ± 2.4 vs. -15.4 ± 2.0%, p < 0.05), while it was significantly lower in TAC group compared to controls (-7.0 ± 2.8 vs. -14.5 ± 2.5%; p < 0.001). In contrast with these findings, PRSW and also MWI were significantly reduced in ACF (58 ± 14 vs. 111 ± 40 mmHg; 1328 ± 411 vs. 1934 ± 308 mmHg%, both p < 0.01), however, they were comparable between TAC and the corresponding sham group (110 ± 26 vs. 116 ± 68 mmHg; 1687 ± 275 Hgmm% vs. 1537 ± 662 Hgmm%; both p = NS). In the pooled population, GLS did not show relationship with PRSW (r=-0.23; p = 0.12), while MWI showed significant correlation with it (r = 0.70; p < 0.001). GLS is significantly influenced by loading conditions, therefore, in case of severe pressure- or volume overload it may not be a reliable marker of LV contractility. In our rat model of pressure overload induced heart failure, contractility was maintained despite decreased GLS, while in the model of volume overload induced heart failure, GLS was maintained despite decreased contractility. MWI reflects contractility in hemodynamic overload states, therefore, it may be a more suitable marker of systolic function. Abstract Figure. Pressure-strain loops of the groups

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
M Ruppert ◽  
B.K Lakatos ◽  
M Tokodi ◽  
C Karime ◽  
I Hizoh ◽  
...  

Abstract Background Two-dimensional (2D) speckle tracking echocardiography (STE)-derived myocardial strain parameters are sensitive markers of left ventricular (LV) systolic function. Novel findings suggest that the contractile state of the myocardium, afterload and preload are major determinants of STE measurements. However, the hypothesis that longitudinal strain expresses the interaction between contractility and loading conditions rather than contractility alone in hemodynamic overload-induced heart failure (HF) has not been tested. Purpose This study aimed to explore the connection between longitudinal strain and contractility, afterload and preload in rat models of pressure overload (PO)- and volume overload (VO)-induced heart failure (HF). Methods Pressure overload (PO)-induced HF was evoked by transverse aortic constriction ([TAC], n=14). Volume overload (VO)-induced HF was established by an aortocaval fistula ([ACF], n=12). Age-matched sham operated animals served as controls. Pressure-volume analysis was carried out to compute cardiac contractility (slope of end-systolic pressure-volume relationship [ESPVR]), afterload (arterial elastance [Ea]) and ventriculo-arterial coupling ([VAC] = Ea/ESPVR). Preload was evaluated by meridional end-diastolic wall stress (σend-diastolic). STE was performed to assess global longitudinal strain (GLS). Results GLS was impaired in both PO-induced HF (−5.9±0.6 vs. −12.9±0.5%, TAC vs Sham, P<0.001) and VO-evoked HF (−11.7±0.7 vs. −13.5±0.4%, ACF vs Sham, P=0.048). Hemodynamic measurements indicated that the TAC group presented with maintained ESPVR, increased Ea and enhanced σend-diastolic. In contrast, the ACF group was characterized by reduced ESPVR, decreased Ea and enhanced σend-diastolic. Ordinary least squares non-linear regression revealed that GLS was predominantly determined by afterload (Ea) in the TAC model and by contractility (ESPVR) in the ACF model. In accordance, GLS showed a strong correlation with Ea in case of PO-induced HF (R= 0.848, P<0.001) and with ESPVR in case of VO-evoked HF (R=−0.526; P=0.008), respectively. Furthermore, GLS also demonstrated strong correlation with VAC in both the TAC and the ACF models. Of particular interest, a robust correlation between VAC and GLS could also be detected in the entire study population (R= 0.654, P<0.001). Conclusion Both afterload and contractility define GLS. Hence, under conditions when both factors become altered, GLS reflects VAC. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): NVKP_16-1-2016-0017


2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
M Tokodi ◽  
BK Lakatos ◽  
M Ruppert ◽  
A Olah ◽  
AA Sayour ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – National budget only. Main funding source(s): This work was supported by the New National Excellence Programme (ÚNKP-19-3-I) of the Ministry for Innovation and Technology in Hungary, and the Artificial Intelligence Research Field Excellence Programme of the National Research, Development and Innovation Office of the Ministry of Innovation and Technology in Hungary. Background Global longitudinal strain (GLS) by speckle-tracking echocardiography (STE) is a sensitive parameter of left ventricular (LV) systolic function. Nevertheless, GLS is dependent on loading conditions. Through the analysis of pressure-strain loops, myocardial work was recently introduced and tested in different clinical scenarios. Myocardial work incorporates afterload, but still, it neglects changes in preload and LV geometry. Purpose Accordingly, our aim was to test our hypothesis that adding instantaneous LV size to myocardial work calculation can further mitigate the load-dependency of GLS, and therefore, a better correlation with intrinsic myocardial contractility can be achieved. Methods Volume overload-induced heart failure was established by an aortocaval fistula (ACF) in male Wistar rats (n = 12). Age-matched sham-operated animals served as controls (n = 12). STE was performed to assess GLS, which was immediately followed by invasive pressure-volume (P-V) analysis to assess LV pressure and to compute a gold-standard index of cardiac contractility (preload recruitable stroke work [PRSW]). Global myocardial work index (GMWI) was calculated from GLS and the invasively measured LV pressure. To compute GMWI indexed to LV area (GMWIA), the instantaneous power (calculated by multiplying the strain rate and the instantaneous LV pressure) was divided by the instantaneous LV area, and then it was integrated from mitral valve closure until mitral valve opening. Results LV ejection fraction did not differ significantly (ACF vs. controls: 59 ± 4 vs. 65 ± 9%, p = NS), whereas GLS (Figure 1A - representative animals) was slightly decreased in the ACF group (-13.2 ± 2.3 vs. -15.4 ± 1.9%, p < 0.05). In contrast, PRSW, GMWI (Figure 1B - representative animals) and GMWIA (Figure 1C - representative animals) were considerably reduced in ACF compared to controls (57 ± 13 vs. 111 ± 38mmHg, 1383 ± 382 vs. 1928 ± 281mmHg%, 11.6 ± 3.7 vs. 47.9 ± 22.8mmHg%/mm2, all p < 0.01). GLS showed moderate correlation with PRSW (r=-0.550, p < 0.01), whereas GMWI correlated more significantly, but still moderately with the invasively measured LV contractility (r = 0.681, p < 0.001). Correlation between the pressure-area-strain loop-derived GMWIA and P-V analysis-derived PRSW (Figure 1D) was found to be very strong (r = 0.924, p < 0.001). Conclusions In the case of LV volume overload-induced heart failure, our pressure-area-strain loop-derived metric reflected LV contractility better than GLS and even GMWI. Therefore, the incorporation of instantaneous LV size into myocardial work calculation represents a promising clinical tool to assess and monitor intrinsic myocardial function independently of loading conditions. Abstract Figure 1


1998 ◽  
Vol 76 (6) ◽  
pp. 613-620 ◽  
Author(s):  
Marian Turcani ◽  
Ruthard Jacob

To test the ability of the heart to express characteristic geometric features of concentric and eccentric hypertrophy concurrently, constriction of the ascending aorta was performed in 4-week-old rats. Simultaneously, these rats were treated with an arteriolar dilator minoxidil. An examination 6 weeks after induction of the hemodynamic overload revealed no signs of congestion in systemic or pulmonary circulation in rats with aortic constriction or minoxidil-treated sham-operated rats. The magnitude of hemodynamic overload caused by aortic constriction or minoxidil treatment could be considered as equivalent, because the same enlargement of left ventricular pressure-volume area was necessary to compensate for either pressure or volume overload. Myocardial contractility decreased in rats with aortic constriction, and the compensation was achieved wholly by the marked concentric hypertrophy. Volume overload in minoxidil-treated rats was compensated partially by the eccentric hypertrophy and partially by the increased myocardial contractility. In contrast, increased lung weight and pleural effusion were found in all minoxidil-treated rats with aortic constriction. Unfavorable changes in left ventricular mass and geometry, relatively high chamber stiffness, and depressed ventricular and myocardial function were responsible for the massive pulmonary congestion.Key words: cardiac hypertrophy, heart failure, pressure overload, volume overload, minoxidil.


2021 ◽  
Author(s):  
Bálint Károly Lakatos ◽  
Mihály Ruppert ◽  
Márton Tokodi ◽  
Attila Oláh ◽  
Szilveszter Braun ◽  
...  

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Mihály Ruppert ◽  
Christian Karime ◽  
Alex A Sayour ◽  
Attila Oláh ◽  
Dávid Nagy ◽  
...  

Introduction: Both sustained left ventricular (LV) pressure overload (PO) and volume overload (VO) induces LV remodeling and eventually development of heart failure (HF). Using rat models, the present study aimed to provide a detailed comparison of distinct aspects of LV function in PO- and VO-induced HF. Methods: PO and VO was induced by transverse aortic constriction (TAC, n=12) and aortocaval shunt (AV-shunt, n=12) creation respectively. Controls underwent corresponding sham operations (n=11). LV remodeling was characterized by echocardiography, histology, qRT PCR, and western blot. LV function was assessed by invasive pressure-volume (P-V) analysis. Results: Both sustained PO and VO resulted in the development of HF, as evidenced by increased LV BNP mRNA expression, pulmonary edema, and characteristic symptoms. While the extent of LV hypertrophy was comparable between the HF models, PO induced concentric while VO evoked eccentric LV remodeling. P-V analysis revealed impaired systolic function in both HF models. Accordingly, decreased ejection fraction and impaired ventriculo-arterial coupling (calculated as the ratio of arterial elastance/LV contractility [VAC]: 0.38±0.05 vs. 1.30±0.13, ShamTAC vs. TAC and 0.52±0.08 vs. 1.17±0.13, ShamAV-Shunt vs. AV-shunt; p<0.05) was detected in both HF models. However, in case of VO the severely reduced LV contractility (slope of end-systolic P-V relationship: 1.79±0.19 vs. 0.52±0.06, ShamAV-Shunt vs. AV-shunt, p<0.05 and 2.14±0.28 vs. 2.03±0.21, ShamTAC vs. TAC p>0.05) underpinned the contractility-afterload mismatch, while in case of PO the increased afterload (arterial elastance: 0.77±0.07 vs. 2.64±0.28, ShamTAC vs. TAC and 0.80±0.07 vs. 0.54±0.05, ShamAV-Shunt vs. AV-shunt; p<0.05) was the main determinant. Furthermore, prolongation of active relaxation occurred to a greater extent in case of PO. In addition, increased myocardial stiffness was only observed in PO-induced HF. Conclusion: Systolic function was reduced in both HF models. However, different factors underpinned the impaired VAC in case of VO (reduced LV contractility) and PO (increased arterial elastance). Furthermore, although diastolic function deteriorated in both models, it occurred to a greater extent in case of PO.


2014 ◽  
Vol 306 (10) ◽  
pp. H1453-H1463 ◽  
Author(s):  
Fuzhong Qin ◽  
Deborah A. Siwik ◽  
David R. Pimentel ◽  
Robert J. Morgan ◽  
Andreia Biolo ◽  
...  

Oxidative stress in the myocardium plays an important role in the pathophysiology of hemodynamic overload. The mechanism by which reactive oxygen species (ROS) in the cardiac myocyte mediate myocardial failure in hemodynamic overload is not known. Accordingly, our goals were to test whether myocyte-specific overexpression of peroxisomal catalase (pCAT) that localizes in the sarcoplasm protects mice from hemodynamic overload-induced failure and prevents oxidation and inhibition of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), an important sarcoplasmic protein. Chronic hemodynamic overload was caused by ascending aortic constriction (AAC) for 12 wk in mice with myocyte-specific transgenic expression of pCAT. AAC caused left ventricular hypertrophy and failure associated with a generalized increase in myocardial oxidative stress and specific oxidative modifications of SERCA at cysteine 674 and tyrosine 294/5. pCAT overexpression ameliorated myocardial hypertrophy and apoptosis, decreased pathological remodeling, and prevented the progression to heart failure. Likewise, pCAT prevented oxidative modifications of SERCA and increased SERCA activity without changing SERCA expression. Thus cardiac myocyte-restricted expression of pCAT effectively ameliorated the structural and functional consequences of chronic hemodynamic overload and increased SERCA activity via a post-translational mechanism, most likely by decreasing inhibitory oxidative modifications. In pressure overload-induced heart failure cardiac myocyte cytosolic ROS play a pivotal role in mediating key pathophysiologic events including hypertrophy, apoptosis, and decreased SERCA activity.


2014 ◽  
Vol 307 (11) ◽  
pp. H1605-H1617 ◽  
Author(s):  
Kristin Wilson ◽  
Anuradha Guggilam ◽  
T. Aaron West ◽  
Xiaojin Zhang ◽  
Aaron J. Trask ◽  
...  

Aortocaval fistula (ACF)-induced volume overload (VO) heart failure (HF) results in progressive left ventricular (LV) dysfunction. Hemodynamic load reversal during pre-HF (4 wk post-ACF; REV) results in rapid structural but delayed functional recovery. This study investigated myocyte and myofilament function in ACF and REV and tested the hypothesis that a myofilament Ca2+ sensitizer would improve VO-induced myofilament dysfunction in ACF and REV. Following the initial sham or ACF surgery in male Sprague-Dawley rats (200–240 g) at week 0, REV surgery and experiments were performed at weeks 4 and 8, respectively. In ACF, decreased LV function is accompanied by impaired sarcomeric shortening and force generation and decreased Ca2+ sensitivity, whereas, in REV, impaired LV function is accompanied by decreased Ca2+ sensitivity. Intravenous levosimendan (Levo) elicited the best inotropic and lusitropic responses and was selected for chronic oral studies. Subsets of ACF and REV rats were given vehicle (water) or Levo (1 mg/kg) in drinking water from weeks 4–8. Levo improved systolic (% fractional shortening, end-systolic elastance, and preload-recruitable stroke work) and diastolic (τ, dP/d tmin) function in ACF and REV. Levo improved Ca2+ sensitivity without altering the amplitude and kinetics of the intracellular Ca2+ transient. In ACF-Levo, increased cMyBP-C Ser-273 and Ser-302 and cardiac troponin I Ser-23/24 phosphorylation correlated with improved diastolic relaxation, whereas, in REV-Levo, increased cMyBP-C Ser-273 phosphorylation and increased α-to-β-myosin heavy chain correlated with improved diastolic relaxation. We concluded that Levo improves LV function, and myofilament composition and regulatory protein phosphorylation likely play a key role in improving function.


2011 ◽  
Vol 111 (6) ◽  
pp. 1778-1788 ◽  
Author(s):  
Kirk R. Hutchinson ◽  
Anuradha Guggilam ◽  
Mary J. Cismowski ◽  
Maarten L. Galantowicz ◽  
Thomas A. West ◽  
...  

Current surgical management of volume overload-induced heart failure (HF) leads to variable recovery of left ventricular (LV) function despite a return of LV geometry. The mechanisms that prevent restoration of function are unknown but may be related to the timing of intervention and the degree of LV contractile impairment. This study determined whether reduction of aortocaval fistula (ACF)-induced LV volume overload during the compensatory stage of HF results in beneficial LV structural remodeling and restoration of pump function. Rats were subjected to ACF for 4 wk; a subset then received a load-reversal procedure by closing the shunt using a custom-made stent graft approach. Echocardiography or in vivo pressure-volume analysis was used to assess LV morphology and function in sham rats; rats subjected to 4-, 8-, or 15-wk ACF; and rats subjected to 4-wk ACF followed by 4- or 11-wk reversal. Structural and functional changes were correlated to LV collagen content, extracellular matrix (ECM) proteins, and hypertrophic markers. ACF-induced volume overload led to progressive LV chamber dilation and contractile dysfunction. Rats subjected to short-term reversal (4-wk ACF + 4-wk reversal) exhibited improved chamber dimensions (LV diastolic dimension) and LV compliance that were associated with ECM remodeling and normalization of atrial and brain natriuretic peptides. Load-independent parameters indicated LV systolic (preload recruitable stroke work, Ees) and diastolic dysfunction (tau, arterial elastance). These changes were associated with an altered α/β-myosin heavy chain ratio. However, these changes were normalized to sham levels in long-term reversal rats (4-wk ACF + 11-wk reversal). Acute hemodynamic changes following ACF reversal improve LV geometry, but LV dysfunction persists. Gradual restoration of function was related to normalization of eccentric hypertrophy, LV wall stress, and ECM remodeling. These results suggest that mild to moderate LV systolic dysfunction may be an important indicator of the ability of the myocardium to remodel following the reversal of hemodynamic overload.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1190
Author(s):  
Alex Ali Sayour ◽  
Mihály Ruppert ◽  
Attila Oláh ◽  
Kálmán Benke ◽  
Bálint András Barta ◽  
...  

Myocardial sodium-glucose cotransporter 1 (SGLT1) has been shown to be upregulated in humans with heart failure (HF) with or without diabetes. In vitro studies have linked SGLT1 to increased nitro-oxidative stress in cardiomyocytes. We aimed to assess the relation between left ventricular (LV) SGLT1 expression and the extent of nitro-oxidative stress in two non-diabetic rat models of chronic heart failure (HF) evoked by either pressure (TAC, n = 12) or volume overload (ACF, n = 12). Sham-operated animals (Sham-T and Sham-A, both n = 12) served as controls. Both TAC and ACF induced characteristic LV structural and functional remodeling. Western blotting revealed that LV SGLT1 protein expression was significantly upregulated in both HF models (both p < 0.01), whereas the phosphorylation of ERK1/2 was decreased only in ACF; AMPKα activity was significantly reduced in both models. The protein expression of the Nox4 NADPH oxidase isoform was increased in both TAC and ACF compared with respective controls (both p < 0.01), showing a strong positive correlation with SGLT1 expression (r = 0.855, p < 0.001; and r = 0.798, p = 0.001, respectively). Furthermore, SGLT1 protein expression positively correlated with the extent of myocardial nitro-oxidative stress in failing hearts assessed by 3-nitrotyrosin (r = 0.818, p = 0.006) and 4-hydroxy-2-nonenal (r = 0.733, p = 0.020) immunostaining. Therefore, LV SGLT1 protein expression was upregulated irrespective of the nature of chronic hemodynamic overload, and correlated significantly with the expression of Nox4 and with the level of myocardial nitro-oxidative stress, suggesting a pathophysiological role of SGLT1 in HF.


Sign in / Sign up

Export Citation Format

Share Document