Response of the submerged macrophytes Vallisneria natans to snails at different densities

2020 ◽  
Vol 194 ◽  
pp. 110373
Author(s):  
Hao Zhang ◽  
Xin Luo ◽  
Qi Li ◽  
Suzhen Huang ◽  
Ning Wang ◽  
...  
Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2590
Author(s):  
Qisheng Li ◽  
Yanqing Han ◽  
Kunquan Chen ◽  
Xiaolong Huang ◽  
Kuanyi Li ◽  
...  

Water level is one of the most important factors affecting the growth of submerged macrophytes in aquatic ecosystems. The rosette plant Vallisneria natans and the erect plant Hydrilla verticillata are two common submerged macrophytes in lakes of the middle and lower reaches of the Yangtze River, China. How water level fluctuations affect their growth and competition is still unknown. In this study, three water depths (50 cm, 150 cm, and 250 cm) were established to explore the responses in growth and competitive patterns of the two plant species to water depth under mixed planting conditions. The results show that, compared with shallow water conditions (50 cm), the growth of both submerged macrophytes was severely suppressed in deep water depth (250 cm), while only V. natans was inhibited under intermediate water depth (150 cm). Moreover, the ratio of biomass of V. natans to H. verticillata gradually increased with increasing water depth, indicating that deep water enhanced the competitive advantage of V. natans over H.verticillata. Morphological adaptation of the two submerged macrophytes to water depth was different. With increasing water depth, H. verticillata increased its height, at the cost of reduced plant numbers to adapt to poor light conditions. A similar strategy was also observed in V. natans, when water depth increased from 50 cm to 150 cm. However, both the plant height and number were reduced at deep water depth (250 cm). Our study suggests that water level reduction in lake restoration efforts could increase the total biomass of submerged macrophytes, but the domination of key plants, such as V. natans, may decrease.


2019 ◽  
Vol 31 (4) ◽  
pp. 1045-1054
Author(s):  
LI Qisheng ◽  
◽  
HUANG Qiang ◽  
LI Yongji ◽  
HAN Yanqing ◽  
...  

2013 ◽  
Vol 59 (4) ◽  
pp. 237-244 ◽  
Author(s):  
Da-Yong Zhao ◽  
Peng Liu ◽  
Chao Fang ◽  
Yi-Meng Sun ◽  
Jin Zeng ◽  
...  

Submerged aquatic macrophytes are an important part of the lacustrine ecosystem. In this study, the bacterial community compositions in the rhizosphere sediments from three kinds of submerged macrophytes (Ceratophyllum demersum, Potamogeton crispus, and Vallisneria natans) were investigated to determine whether submerged macrophytes could drive the variation of bacterial community in the eutrophic Taihu Lake, China. Molecular techniques, including terminal restriction fragment length polymorphism (T-RFLP) of PCR-amplified 16S rRNA gene and clone libraries, were employed to analyze the bacterial community compositions. Remarkable differences of the T-RFLP patterns were observed among the different samples, and the results of LIBSHUFF analysis also confirmed that the bacterial community compositions in the rhizosphere sediments of three kinds of submerged macrophytes were statistically different from that of the unvegetated sediment. Acidobacteria, Deltaproteobacteria, and Betaproteobacteria were the dominant bacterial groups in the rhizosphere sediments of Ceratophyllum demersum, Potamogeton crispus, and Vallisneria natans, respectively, accounting for 15.38%, 29.03%, and 18.00% of the total bacterial abundances. Our study demonstrated that submerged macrophytes could influence the bacterial community compositions in their rhizosphere sediments, suggesting that macrophytes have an effect on the cycling and transportation of nutrients in the freshwater lake ecosystem.


Sign in / Sign up

Export Citation Format

Share Document