scholarly journals Effects of RNAi-mediated plasma membrane calcium transporting ATPase and inositol 1,4,5-trisphosphate receptor gene silencing on the susceptibility of Mythimna separata to wilforine

2021 ◽  
Vol 227 ◽  
pp. 112909
Author(s):  
Xiao-peng Lu ◽  
Jia-huan Liu ◽  
Xiang-yun Fu ◽  
Feng-jin Wang ◽  
Hua Wu ◽  
...  
Gene ◽  
1997 ◽  
Vol 196 (1-2) ◽  
pp. 181-185 ◽  
Author(s):  
Kiyoshi Morikawa ◽  
Tetsuya Ohbayashi ◽  
Midori Nakagawa ◽  
Yoshiyuki Konishi ◽  
Yasutaka Makino ◽  
...  

1997 ◽  
Vol 17 (2) ◽  
pp. 635-645 ◽  
Author(s):  
Valerie A. Street ◽  
Martha M. Bosma ◽  
Vasiliki P. Demas ◽  
Melissa R. Regan ◽  
Doras D. Lin ◽  
...  

Genome ◽  
1996 ◽  
Vol 39 (2) ◽  
pp. 456-458 ◽  
Author(s):  
Silja Kostia ◽  
Jukka Palo ◽  
Sirkka-Liisa Varvio

A bovine RAPD profile, generated by a 10-mer primer, was analysed by sequencing the major fragments. Three of four different fragments showed homologies to previously characterized mammalian sequences. One was 61–66% identical to LINE sequences and another was 78.5% identical to a human chromosome 2 sequence tagged site. The third fragment was 93.1% identical to the human type 2 inositol 1,4,5-trisphosphate receptor gene. This fragment had counterparts in white-tailed deer and reindeer; fragments of slightly different size in these species showed high sequence similarity and the size differences were due to varying numbers of dinucleotide microsatellite repeats inside the fragment. Key words : RAPD, artiodactyls, sequence similarity, microsatellites, type 2 inositol 1,4,5-trisphosphate receptor.


Neuroscience ◽  
1993 ◽  
Vol 57 (2) ◽  
pp. 339-352 ◽  
Author(s):  
A.M. Cunningham ◽  
D.K. Ryugo ◽  
A.H. Sharp ◽  
R.R. Reed ◽  
S.H. Snyder ◽  
...  

1990 ◽  
Vol 111 (2) ◽  
pp. 615-624 ◽  
Author(s):  
T Satoh ◽  
C A Ross ◽  
A Villa ◽  
S Supattapone ◽  
T Pozzan ◽  
...  

The Ca2+ mobilization effect of inositol 1,4,5-trisphosphate, the second messenger generated via receptor-stimulated hydrolysis of phosphatidylinositol 4,5-bisphosphate, is mediated by binding to intracellular receptors, which are expressed in high concentration in cerebellar Purkinje cells. Partially conflicting previous reports localized the receptor to various subcellular structures: elements of ER, both rough and smooth-surfaced, the nuclear envelope, and even the plasma membrane. We have now reinvestigated the problem quantitatively by using cryosections of rat cerebellar tissue immunolabeled with polyclonal monospecific antibodies against the inositol 1,4,5-trisphosphate receptor. By immunofluorescence the receptor was detected only in Purkinje cells, whereas the other cells of the cerebellar cortex remained negative. In immunogold-decorated ultrathin cryosections of the Purkinje cell body, the receptor was concentrated in cisternal stacks (piles of up to 12 parallel cisternae separated by regularly spaced bridges, located both in the deep cytoplasm and beneath the plasma membrane; average density, greater than 5 particles/micron of membrane profile); in cisternal singlets and doublets adjacent to the plasma membrane (average density, approximately 2.5 particles/micron); and in other apparently smooth-surfaced vesicular and tubular profiles. Additional smooth-surfaced elements were unlabeled. Perinuclear and rough-surfaced ER cisternae were labeled much less by themselves (approximately 0.5 particles/micron, two- to threefold the background), but were often in direct membrane continuity with heavily labeled, smooth-surfaced tubules and cisternal stacks. Finally, mitochondria, Golgi cisternae, multivesicular bodies, and the plasma membrane were unlabeled. In dendrites, approximately half of the nonmitochondrial, membrane-bound structures (cisternae, tubules, and vesicles), as well as small cisternal stacks, were labeled. Dendritic spines always contained immunolabeled cisternae and vesicles. The dendritic plasma membrane, of both shaft and spines, was consistently unlabeled. These results identify a large, smooth-surfaced ER subcompartment that appears equipped to play a key role in the control of Ca2+ homeostasis: in particular, in the generation of [Ca2+]i transients triggered by activation of specific receptors, such as the quisqualate-preferring trans(+/-)-1-amino-1,3-cyclopentamedicarboxylic acid glutamatergic receptors, which are largely expressed by Purkinje cells.


2003 ◽  
Vol 350 (2) ◽  
pp. 69-72 ◽  
Author(s):  
Takeshi Aoki ◽  
Minoru Narita ◽  
Orie Ohnishi ◽  
Keisuke Mizuo ◽  
Michiko Narita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document