Canada goldenrod invasion cause significant shifts in the taxonomic diversity and community stability of plant communities in heterogeneous landscapes in urban ecosystems in East China

2019 ◽  
Vol 127 ◽  
pp. 504-509 ◽  
Author(s):  
Congyan Wang ◽  
Bingde Wu ◽  
Kun Jiang ◽  
Jiawei Zhou ◽  
Jun Liu ◽  
...  
2021 ◽  
Vol 48 (2) ◽  
pp. 215-228
Author(s):  
Lubov Gubar ◽  
Serhii Koniakin

Abstract In connection with the increasing negative impact of invasive alien species on biodiversity and the environment in general, their research, as well as throughout the world, is relevant. The distribution of the Heracleum sosnowskyi and H. mantegazzianum of the secondary range on the example of the Kyiv agglomeration is investigated in the work. In our study we aimed to evaluate the possibility of spontaneous spread of giant hogweeds in the secondary range, adaptation of the species to the new conditions of the environment that favor to control of these species’ expansion and reduce the threat to the urban ecosystems and citizens’ health. We hypothesise that in the secondary range H. sosnowskyi and H. mantegazzianum settle sites with relatively high temperature (Tr), lightening (Lc), and soil moisture conditions similar to that in their natural range. 17 populations and four localities (sites) of H. sosnowskyi and H. mantegazzianum were studied. They were found within forest, meadow, riverine and ruderal plant communities. It is indicated that the advent species fully adapted to the conditions of the environment. The difference by ecological indicators Lc2 and Tm1 is pointed out. According to the results of our research, for the area of Kyiv urban agglomeration the growth of H. sosnowskyi and H. mantegazzianum is indicated in the plants communities of six classes. They spread most in ruderal plant communities of the: Robinietea, Artemisietea, Epilobietea classes. The studied species belong to invasive plant species in Ukraine and are characterized by extremely high effect on the environment and high invasive potential.


2018 ◽  
Author(s):  
Sara Tomiolo ◽  
Mark C. Bilton ◽  
Katja Tielbörger

Summary(1) Climate change will decrease precipitation and increase rainfall variability in Eastern Mediterranean regions, with responses of plant communities largely uncertain. Here, we tested short-term responses of dryland plant communities to contrasting rainfall regimes using a novel experimental approach.(2) We exposed three annual plant communities to sharp changes in climatic conditions using whole community reciprocal transplants of soil and seed banks. We tested for the role of climate vs. community origin on community response and resistance. In parallel, we asked whether origin-specific climatic adaptations predict compositional shifts across climates.(3) For both community origins, the most dry-adapted species in each community increased in dry climate and the wet-adapted species increased in wet climate. Dry community origins showed large compositional shifts while maintaining stable plant density, biomass and species richness across climates. Conversely, wet communities showed smaller compositional shifts, but larger variation in biomass and richness.(4) Asynchrony in species abundances in response to rainfall variability could maintain structural community stability. This, in combination with seed dormancy, has the ability to delay extinction in response to climate change. However, increasing occurrence of extreme droughts may, in the long-term, lead to loss of wet-adapted species.


AoB Plants ◽  
2020 ◽  
Vol 12 (3) ◽  
Author(s):  
Arantzazu L Luzuriaga ◽  
Pablo Ferrandis ◽  
Joel Flores ◽  
Adrián Escudero

Abstract Previous studies found that plant communities on infertile soils are relatively resistant to climatic variation due to stress tolerance adaptations. However, the species assemblies in gypsum soil habitats require further investigation. Thus, we considered the following questions. (1) Do harsher arid conditions determine the characteristics of the species that form plant assemblages? (2) Is the selection of the species that assemble in arid conditions mediated by their ability to grow on gypsum soils? (3) Is the selection of species that assemble in harsher conditions related to phylogenetically conserved functional traits? Perennial plant communities were analysed in 89 gypsum-soil sites along a 400 km climate gradient from the central to southeastern Iberian Peninsula. Each local assemblage was analysed in 30 × 30 m plots and described based on taxonomic, functional (soil plant affinity) and phylogenetic parameters. The mean maximum temperatures in the hottest month, mean annual precipitation and their interaction terms were used as surrogates for the aridity conditions in generalized linear models. In the hottest locations, the gypsophily range narrowed and the mean gypsophily increased at the community level, thereby suggesting the filtering of species and the dominance of soil specialists in the actual plant assemblies. Drier sites had higher taxonomic diversity. The species that formed the perennial communities were close in evolutionary terms at the two ends of the aridity gradient. The mean maximum temperatures in the hottest month had the main abiotic filtering effect on perennial plant communities, which was mediated by the ability of species to grow on gypsum soils, and thus gypsum specialists dominated the species assemblies in the hottest locations. In contrast, the perennial communities on gypsum soils were relatively resistant to changes in precipitation. Our findings suggest that the warmer environmental conditions predicted by global change models will favour gypsum specialists over generalists.


2015 ◽  
Vol 116 (6) ◽  
pp. 1023-1034 ◽  
Author(s):  
Bradley Z. Carlson ◽  
Philippe Choler ◽  
Julien Renaud ◽  
Jean-Pierre Dedieu ◽  
Wilfried Thuiller

Sign in / Sign up

Export Citation Format

Share Document