scholarly journals Whole plant community transplants across climates reveal structural community stability due to large shifts in species assemblage

2018 ◽  
Author(s):  
Sara Tomiolo ◽  
Mark C. Bilton ◽  
Katja Tielbörger

Summary(1) Climate change will decrease precipitation and increase rainfall variability in Eastern Mediterranean regions, with responses of plant communities largely uncertain. Here, we tested short-term responses of dryland plant communities to contrasting rainfall regimes using a novel experimental approach.(2) We exposed three annual plant communities to sharp changes in climatic conditions using whole community reciprocal transplants of soil and seed banks. We tested for the role of climate vs. community origin on community response and resistance. In parallel, we asked whether origin-specific climatic adaptations predict compositional shifts across climates.(3) For both community origins, the most dry-adapted species in each community increased in dry climate and the wet-adapted species increased in wet climate. Dry community origins showed large compositional shifts while maintaining stable plant density, biomass and species richness across climates. Conversely, wet communities showed smaller compositional shifts, but larger variation in biomass and richness.(4) Asynchrony in species abundances in response to rainfall variability could maintain structural community stability. This, in combination with seed dormancy, has the ability to delay extinction in response to climate change. However, increasing occurrence of extreme droughts may, in the long-term, lead to loss of wet-adapted species.

2020 ◽  
Vol 3 (1) ◽  
pp. 1-17
Author(s):  
Mbewe Jacqueline ◽  
Kabwe Harnadih Mubanga

Purpose: Climate change affects local and global rainfall patterns and hence has a counter effect on smallholder agriculture. Impacts of climate change on agriculture are largely due to rainfall variability resulting in reduced yields due to crop-water stress and emergency of pathogens and diseases. In Zambia, climate change has been manifested through increased intensity of droughts and floods. These rainfall anomalies adversely affect agriculture and food systems. In order to survive the impacts of climate change and variability, smallholder farmers in Chongwe have adopted their livelihoods and farming systems to the new climatic patterns.Methodology: This study assessed how smallholder farmers in Chongwe District have adopted their livelihoods as a response to changed climatic conditions. It also investigated the perceptions of smallholder farmers as regards changes in aspects of their climatic conditions. Data collection involved a critical review of literature related to climate change and agriculture, observations, semi- structured interviews with 60 smallholder farmers and eight key informants. The data were analysed using multiple analysis techniques which included the descriptive statistics, One-way analysis of Variance (ANOVA), and the post-hoc Least Square Difference for pairwise comparisons of incomes from different livelihoods engaged in by smallholder farmers .The gendered comparisons of livelihood engagement was done using the chi-square test of association.Findings: The results showed that all farmers perceived occurrence of changes in climatic conditions in the light of changed rainfall patterns in that there has been uncertainty in onset of rains, short rainy season, more intermittent rainfall and increased frequency of intra-seasonal droughts. These changes have led to farmers to adopt such farming techniques as potholing in preference to oxen and tractor ploughing when farming is done on smaller pieces of land. There was a significant difference in the mean annual incomes generated from on-farm livelihoods (ZMW 3677.59; n=58) and off-farm livelihoods (ZMW 6840.91; n = 58) (p= 0.001). Farmers generated the highest income returns by engaging in casual work (ZMW 10307.69; n = 13) compared to every other livelihoods common in the area such as gardening (p=0.002), petty trade (p=0.002) and on-farm livelihoods (p=0.001).Contribution to policy, theory and practice: It was therefore concluded that diversification of income through diversified livelihoods would help smallholder farmers enhance their resilience in the face of changed climatic conditions. On-farm livelihoods should not always be the main income source for farmers as results indicated that farmers engaged in casual work generated higher incomes than those who depended on farming. It was recommended that policy direction should be towards introduction of a gender responsive credit facility that can help improve women’s engagement in off-farm income generating livelihoods, as well as encourage climate change resilience.


2015 ◽  
Vol 370 (1665) ◽  
pp. 20130561 ◽  
Author(s):  
Shlomit Paz

West Nile virus (WNV), the most widely distributed virus of the encephalitic flaviviruses, is a vector-borne pathogen of global importance. The transmission cycle exists in rural and urban areas where the virus infects birds, humans, horses and other mammals. Multiple factors impact the transmission and distribution of WNV, related to the dynamics and interactions between pathogen, vector, vertebrate hosts and environment. Hence, among other drivers, weather conditions have direct and indirect influences on vector competence (the ability to acquire, maintain and transmit the virus), on the vector population dynamic and on the virus replication rate within the mosquito, which are mostly weather dependent. The importance of climatic factors (temperature, precipitation, relative humidity and winds) as drivers in WNV epidemiology is increasing under conditions of climate change. Indeed, recent changes in climatic conditions, particularly increased ambient temperature and fluctuations in rainfall amounts, contributed to the maintenance (endemization process) of WNV in various locations in southern Europe, western Asia, the eastern Mediterranean, the Canadian Prairies, parts of the USA and Australia. As predictions show that the current trends are expected to continue, for better preparedness, any assessment of future transmission of WNV should take into consideration the impacts of climate change.


2021 ◽  
Author(s):  
Joséphine Couet ◽  
Emma-Liina Marjakangas ◽  
Andrea Santangeli ◽  
John Atle Kålås ◽  
Åke Lindström ◽  
...  

Abstract Climate change is pushing species ranges towards poles and mountain tops. Although many studies have documented local altitudinal shifts, knowledge of general patterns at a large spatial scale, such as a whole mountain range, is very limited. From a conservation perspective, studying altitudinal shifts is particularly important as mountain regions often represent biodiversity hotspots and are among the most vulnerable ecosystems. Here, we examine whether altitudinal shifts have occurred among birds in the Scandinavian mountains over 13 years and assess whether such shifts are related to species’ traits. Using abundance data, we show a clear pattern of uphill shifts in the mean altitudes of the bird species’ abundances across the Scandinavian mountains, with an average speed of 0.9 m per year. Out of 77 species, 54 shifted their ranges uphill. In general, the range shift was faster when the altitudinal range within the area was wider. Importantly, the altitudinal shift was strongly related to species’ longevity: short-lived species showed more pronounced altitudinal uphill shifts than long-lived species. Our results show that the altitudinal range shifts are not only driven by a small number of individuals at the range boundaries, but the overall bird abundances are on the move. This highlights the wide-ranging impact of climate change and the potential vulnerability of species with slow life-histories, as they appear unable to timely respond to rapidly changing climatic conditions.


2020 ◽  
Author(s):  
Kyriakos Themistocleous ◽  
Diofantos Hadjimitsis ◽  
Gunter Schreier ◽  
Haris Kontoes ◽  
Albert Ansmann ◽  
...  

<p>Cyprus enters the space arena with the ‘EXCELSIOR’ project. ‘EXCELSIOR’ is expected to bring change in many aspects, including new opportunities for researchers, enhanced skills development for future experts in the Earth Observation and Geoinformation sector on a local, national, European and global level. Due to its geographical proximity, ‘EXCELSIOR’ can become a hub for partners in Middle Eastern and Northern African countries. Cyprus’s unique geostrategic position can support Earth Observation from satellites programmes in three continents and provide valuable services in the processes of satellite calibration and validation. The ERATOSTHENES Centre of Excellence (ECoE), with its expertise and infrastructure, could further complement the existing network of international ground stations. Cyprus is ideally located to host the ECoE, due to its climate, which is characterized by 300 days of sunshine a year, providing excellent weather conditions for cloud free satellite images.</p><p>There are some distinct needs and opportunities that motivate the establishment of an Earth Observation Centre of Excellence in Cyprus. The needs include: i) to establish a Supersite for aerosol and cloud monitoring in the Eastern Mediterranean, Middle East and North Africa (EMMENA): strong demand for EO monitoring to provide data to evaluate the extent of pollution and climate change, especially in the EMMENA region; ii) to observe droughts and water shortages in the EMMENA region; iii) to adopt Rehabilitation programmes in EMMENA; iv) to reduce Disaster Risk and v) to create a Regional Digital Innovation Hub for Earth Observation in Cyprus. The foreseen opportunities include: i) the ECoE has the potential to become a catalyst for facilitating and enabling Regional, European and International cooperation; ii) the Eco E can capitalise on the favourable environmental, weather and climatic conditions of Cyprus to conduct cutting-edge research with impact in various sectors, including climate change, marine, solar energy, etc.; iii) the development of the Cyprus Space Strategy, which can be exploited for further Earth observation research and applications; iv) create a unique European capacity in Cyprus by mobilizing internal national assets and consolidating European EO capabilities in Cyprus to serve EMMENA. The ECoE will procure and develop the European Satellite Ground Stations covering the EMMENA region; v) accessing funding instruments for Earth Observation at the national and European Level and vi) the development of Big Data management and analytics.                              </p><p>The EXCELSIOR project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No 857510 and from the Government of the Republic of Cyprus through the Directorate General for the European Programmes, Coordination and Development.</p>


2021 ◽  
Author(s):  
Nikolaos Christidis ◽  
Peter Stott

<p>As the climate becomes warmer under the influence of anthropogenic forcings, increases in the concentration of the atmospheric water vapour may lead to an intensification of wet and dry extremes. Understanding regional hydroclimatic changes can provide actionable information to help communities adapt to impacts specific to their location. This study employs an ensemble of 9 CMIP6 models and compares experiments with and without the effect of human influence using detection and attribution methodologies. The analysis employs two popular drought indices: the rainfall-based standardised precipitation index (SPI), and its extension, the standardized precipitation evapotranspiration index (SPEI), which also accounts for changes in potential evapotranspiration. Both indices are defined relative to the pre-industrial climate, which enables a comparison between past, present and future climatic conditions. Potential evapotranspiration is computed with the simple, temperature-based, Thornthwaite formula. The latter has been criticised for omitting the influences of radiation, humidity and wind, but has been shown to yield very similar trends, spatial averages and correlations with more sophisticated models. It is therefore deemed to be adequate in studies assessing the broader overall effect of climate change, which are more concerned with wet and dry trends and changes in characteristics of extremes rather than the precise estimation of drought index values. The rainfall-based index suggests a shift towards wetter conditions in the north and dryer in the south of the continent, as well as an overall increase in variability. Nevertheless, when the temperature effect is included, the wet trends in the north are largely masked leading to increasingly drier summers across most of the continent. A formal statistical methodology indicates that the fingerprint of forced climate change has emerged above variability and is thus detectable in the observational trends of both indices. A broadening of the SPI distribution also suggests higher rainfall variability in a warmer climate. The study demonstrates a striking drying trend in the Mediterranean region, suggesting that what were extremely dry conditions there in the pre-industrial climate may become normal by the end of the century.</p>


Atmosphere ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 26 ◽  
Author(s):  
Katiana Constantinidou ◽  
George Zittis ◽  
Panos Hadjinicolaou

The Eastern Mediterranean (EM) and the Middle East and North Africa (MENA) are projected to be exposed to extreme climatic conditions in the 21st century, which will likely induce adverse impacts in various sectors. Relevant climate change impact assessments utilise data from climate model projections and process-based impact models or simpler, index-based approaches. In this study, we explore the implied uncertainty from variations of climate change impact-related indices as induced by the modelled climate (WRF regional climate model) from different land surface schemes (Noah, NoahMP, CLM and RUC). The three climate change impact-related indicators examined here are the Radiative Index of Dryness (RID), the Fuel Dryness Index (Fd) and the Water-limited Yield (Yw). Our findings indicate that Noah simulates the highest values for both RID and Fd, while CLM gives the highest estimations for winter wheat Yw. The relative dispersion in the three indices derived by the different land schemes is not negligible, amounting, for the overall geographical domain of 25% for RID and Fd, and 10% for Yw. The dispersion is even larger for specific sub-regions.


Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 827 ◽  
Author(s):  
Jorge Alvar-Beltrán ◽  
Abdalla Dao ◽  
Anna Dalla Marta ◽  
Ana Heureux ◽  
Jacob Sanou ◽  
...  

The Sahel region is considered a hotspot for climate change hazards and vulnerability of weather reliant sectors, including agriculture. Farmers in Burkina Faso have a long history of adapting their farming activities to frequent changes in climate. Using 150 in-person surveys, this study assesses farmers’ perceptions of climate change based on multiple climate variables, and reviews adaptation practices, including soil and water conservation strategies, in the Soudanian, Soudano-Sahelian, and Sahelian agroclimatic zones of Burkina Faso. In general, farmers are aware of changing climatic conditions, including increased temperatures, greater rainfall variability, heavier precipitation events, delayed onset, and premature offset of the rainy season. However, farmers perceive shifts in climate differently depending on their location and agroclimatic zone. As a result, different adaption strategies are implemented by farmers according to the climatic, societal, and economic context. Survey results show that in the Sahel, climate adaptation strategies rely on traditional knowledge and experimental approaches; whereas in the Soudanian zone, where weather conditions are more favorable for agriculture, adaptation practices are market oriented. These regional differences are important for targeting advisory services, planning processes, and decision-making to support the effective provision of weather and climate information services to the last mile.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 343 ◽  
Author(s):  
George Zittis ◽  
Adriana Bruggeman ◽  
Corrado Camera

According to observational and model-based studies, the eastern Mediterranean region is one of the most prominent climate-change hotspots in the world. The combined effect of warming and drying is expected to augment the regional impacts of global warming. In addition to changes in mean climatic conditions, global warming is likely to induce changes in several aspects of extreme rainfall such as duration and magnitude. In this context, we explore the impact of climate change on precipitation with the use of several indicators. We focus on Cyprus, a water-stressed island located in the eastern Mediterranean Basin. Our results are derived from a new high-resolution simulation for the 21st century, which is driven by a “business-as-usual” scenario. In addition to a strong temperature increase (up to 4.1 °C), our analysis highlights that, on average for the island, most extreme precipitation indicators decrease, suggesting a transition to much drier conditions. The absolute daily rainfall maxima exhibit strong local variability, indicating the need for high resolution simulations to understand the potential impacts on future flooding.


This article presents the results of twelve-year trials of the Region and Ryabota simple hybrids and the three-line hybrid Kameniar breeding laboratory of IOC NAANU hybrid labs, and analyzes their adaptation to ongoing climate change. The purpose of our work was to determine the formation of major economic traits in sunflower hybrids, depending on the agro-climatic conditions of the year.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 927
Author(s):  
Jamshad Hussain ◽  
Tasneem Khaliq ◽  
Muhammad Habib ur Rahman ◽  
Asmat Ullah ◽  
Ishfaq Ahmed ◽  
...  

Rising temperature from climate change is the most threatening factor worldwide for crop production. Sustainable wheat production is a challenge due to climate change and variability, which is ultimately a serious threat to food security in Pakistan. A series of field experiments were conducted during seasons 2013–2014 and 2014–2015 in the semi-arid (Faisalabad) and arid (Layyah) regions of Punjab-Pakistan. Three spring wheat genotypes were evaluated under eleven sowing dates from 16 October to 16 March, with an interval of 14–16 days in the two regions. Data for the model calibration and evaluation were collected from field experiments following the standard procedures and protocols. The grain yield under future climate scenarios was simulated by using a well-calibrated CERES-wheat model included in DSSAT v4.7. Future (2051–2100) and baseline (1980–2015) climatic data were simulated using 29 global circulation models (GCMs) under representative concentration pathway (RCP) 8.5. These GCMs were distributed among five quadrants of climatic conditions (Hot/Wet, Hot/Dry, Cool/Dry, Cool/Wet, and Middle) by a stretched distribution approach based on temperature and rainfall change. A maximum of ten GCMs predicted the chances of Middle climatic conditions during the second half of the century (2051–2100). The average temperature during the wheat season in a semi-arid region and arid region would increase by 3.52 °C and 3.84 °C, respectively, under Middle climatic conditions using the RCP 8.5 scenario during the second half-century. The simulated grain yield was reduced by 23.5% in the semi-arid region and 35.45% in the arid region under Middle climatic conditions (scenario). Mean seasonal temperature (MST) of sowing dates ranged from 16 to 27.3 °C, while the mean temperature from the heading to maturity (MTHM) stage was varying between 12.9 to 30.4 °C. Coefficients of determination (R2) between wheat morphology parameters and temperature were highly significant, with a range of 0.84–0.96. Impacts of temperature on wheat sown on 15 March were found to be as severe as to exterminate the crop before heading. The spikes and spikelets were not formed under a mean seasonal temperature higher than 25.5 °C. In a nutshell, elevated temperature (3–4 °C) till the end-century can reduce grain yield by about 30% in semi-arid and arid regions of Pakistan. These findings are crucial for growers and especially for policymakers to decide on sustainable wheat production for food security in the region.


Sign in / Sign up

Export Citation Format

Share Document