A growing season climatic index to simulate gross primary productivity and carbon budget in a Tibetan alpine meadow

2017 ◽  
Vol 81 ◽  
pp. 285-294 ◽  
Author(s):  
Xi Chai ◽  
Peili Shi ◽  
Ning Zong ◽  
Yongtao He ◽  
Xianzhou Zhang ◽  
...  
2020 ◽  
Vol 12 (13) ◽  
pp. 2104
Author(s):  
Maral Maleki ◽  
Nicola Arriga ◽  
José Miguel Barrios ◽  
Sebastian Wieneke ◽  
Qiang Liu ◽  
...  

This study aimed to understand which vegetation indices (VIs) are an ideal proxy for describing phenology and interannual variability of Gross Primary Productivity (GPP) in short-rotation coppice (SRC) plantations. Canopy structure- and chlorophyll-sensitive VIs derived from Sentinel-2 images were used to estimate the start and end of the growing season (SOS and EOS, respectively) during the period 2016–2018, for an SRC poplar (Populus spp.) plantation in Lochristi (Belgium). Three different filtering methods (Savitzky–Golay (SavGol), polynomial (Polyfit) and Harmonic Analysis of Time Series (HANTS)) and five SOS- and EOS threshold methods (first derivative function, 10% and 20% percentages and 10% and 20% percentiles) were applied to identify the optimal methods for the determination of phenophases. Our results showed that the MEdium Resolution Imaging Spectrometer (MERIS) Terrestrial Chlorophyll Index (MTCI) had the best fit with GPP phenology, as derived from eddy covariance measurements, in identifying SOS- and EOS-dates. For SOS, the performance was only slightly better than for several other indices, whereas for EOS, MTCI performed markedly better. The relationship between SOS/EOS derived from GPP and VIs varied interannually. MTCI described best the seasonal pattern of the SRC plantation’s GPP (R2 = 0.52 when combining all three years). However, during the extreme dry year 2018, the Chlorophyll Red Edge Index performed slightly better in reproducing growing season GPP variability than MTCI (R2 = 0.59; R2 = 0.49, respectively). Regarding smoothing functions, Polyfit and HANTS methods showed the best (and very similar) performances. We further found that defining SOS as the date at which the 10% or 20% percentile occurred, yielded the best agreement between the VIs and the GPP; while for EOS the dates of the 10% percentile threshold came out as the best.


2010 ◽  
Vol 30 (5) ◽  
pp. 264-269 ◽  
Author(s):  
Gang Fu ◽  
Zhenxi Shen ◽  
Xianzhou Zhang ◽  
Songcai You ◽  
Jianshuang Wu ◽  
...  

2021 ◽  
Vol 307 ◽  
pp. 108456
Author(s):  
Marcelo Sacardi Biudes ◽  
George Louis Vourlitis ◽  
Maísa Caldas Souza Velasque ◽  
Nadja Gomes Machado ◽  
Victor Hugo de Morais Danelichen ◽  
...  

2021 ◽  
Vol 13 (4) ◽  
pp. 669
Author(s):  
Hanchen Duan ◽  
Xian Xue ◽  
Tao Wang ◽  
Wenping Kang ◽  
Jie Liao ◽  
...  

Alpine meadow and alpine steppe are the two most widely distributed nonzonal vegetation types in the Qinghai-Tibet Plateau. In the context of global climate change, the differences in spatial-temporal variation trends and their responses to climate change are discussed. It is of great significance to reveal the response of the Qinghai-Tibet Plateau to global climate change and the construction of ecological security barriers. This study takes alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau as the research objects. The normalized difference vegetation index (NDVI) data and meteorological data were used as the data sources between 2000 and 2018. By using the mean value method, threshold method, trend analysis method and correlation analysis method, the spatial and temporal variation trends in the alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau were compared and analyzed, and their differences in the responses to climate change were discussed. The results showed the following: (1) The growing season length of alpine meadow was 145~289 d, while that of alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau was 161~273 d, and their growing season lengths were significantly shorter than that of alpine meadow. (2) The annual variation trends of the growing season NDVI for the alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau increased obviously, but their fluctuation range and change rate were significantly different. (3) The overall vegetation improvement in the Qinghai-Tibet Plateau was primarily dominated by alpine steppe and alpine meadow, while the degradation was primarily dominated by alpine meadow. (4) The responses between the growing season NDVI and climatic factors in the alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau had great spatial heterogeneity in the Qinghai-Tibet Plateau. These findings provide evidence towards understanding the characteristics of the different vegetation types in the Qinghai-Tibet Plateau and their spatial differences in response to climate change.


2021 ◽  
Vol 307 ◽  
pp. 108527
Author(s):  
Ning Chen ◽  
Changchun Song ◽  
Xiaofeng Xu ◽  
Xianwei Wang ◽  
Nan Cong ◽  
...  

2020 ◽  
Author(s):  
Alexander Turner ◽  
Philipp Köhler ◽  
Troy Magney ◽  
Christian Frankenberg ◽  
Inez Fung ◽  
...  

Author(s):  
Yimian Ma ◽  
Xu Yue ◽  
Hao Zhou ◽  
Cheng Gong ◽  
Yadong Lei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document