Evaluation of the comprehensive feeding strategy and trophic role of overexploited mesopredator species in the Sea of Marmara (northeastern Mediterranean)

Author(s):  
Güzin Gül ◽  
Nazli Demirel
Author(s):  
Renato Junqueira de Souza Dantas ◽  
Tatiana Silva Leite ◽  
Cristiano Queiroz de Albuquerque

In the present study, we evaluated the trophic role of Octopus insularis Leite and Haimovici, 2008 in the food web of Rocas Atoll, a preserved insular territory in the southwest Atlantic. Using stable isotope analysis of C and N, we showed that the local trophic web comprises at least four trophic levels, where the octopus presents d13C values from -12.1 to -6.1‰, d15N values from 6.4 to 11.0‰ and occupies a trophic position (TP) between the second and third trophic levels (mean ± SD TPadditive = 3.08 ± 0.36; TPBayesian = 3.12 ± 0.17). Among other benthic/reef-associated consumers, this cephalopod stood out for its much wider isotopic niche (SEAB = 4.7890), pointing to a diet diversified in carbon sources, but focused on prey in lower TPs. Time-minimizing feeding strategy seemed almost permanent throughout the life cycle, given the great niche overlap between small and large octopuses (large: SEAB = 4.59, small: SEAB = 4.03) and their very similar trophic positions (TPadditive/TPBayesian: large = 3.27/3.26; small = 2.89/2.99). Also, as a prey, O. insularis composed 16%-24% of the diet of some benthic/demersal predators. Overall, exerting great predatory pressure on bottom-associated organisms and serving as a relevant food source for top and mesopredators, O. insularis represented a top consumer of the benthic portion of the food web and an important link between its benthic and demersal strata with potential for keystone species.


2013 ◽  
Vol 34 ◽  
pp. 153-164 ◽  
Author(s):  
Andrey A. Prudkovsky

PLoS ONE ◽  
2017 ◽  
Vol 12 (9) ◽  
pp. e0183108 ◽  
Author(s):  
Bruno M. Carreira ◽  
Pedro Segurado ◽  
Anssi Laurila ◽  
Rui Rebelo

Food Webs ◽  
2016 ◽  
Vol 7 ◽  
pp. 20-28 ◽  
Author(s):  
Pierre-Yves Pascal ◽  
Olivier Gros ◽  
Henricus T.S. Boschker

2020 ◽  
Vol 40 (5) ◽  
pp. 520-525
Author(s):  
Jessica E Griffin ◽  
Brian P O’Malley ◽  
Jason D Stockwell

Abstract Freshwater mysids of the Mysis relicta group are omnivorous macroinvertebrates that form an important link between fishes and lower trophic levels in many north temperate to Arctic lakes, where they exhibit diel vertical migration (DVM) to exploit subsurface food-rich layers at night. Benthic food resources have been assumed to be less important for mysid diets than pelagic zooplankton. Studies have nevertheless indicated that mysids consume benthic sedimented detritus, calling this assumption into question. We conducted a food-choice experiment to evaluate the feeding preferences of Mysis diluviana (Audzijonyte & Väinölä, 2005) by presenting field-caught specimens in individual foraging arenas with multiple choices of food. Experimental food treatments included a preferred pelagic prey (Daphnia), a presumed less desirable benthic resource (detritus), and a combination of both. We hypothesized that M. diluviana 1) prefers Daphnia over detritus and consumes only Daphnia in combination treatments, and 2) would not consume detritus except when detritus was the only food source available. Contrary to our hypothesis, M. diluviana readily consumed detritus in the presence of Daphnia. Mysis diluviana unexpectedly consumed more individuals of Daphnia in the presence rather than in the absence of detritus. Our results demonstrate that mysids take advantage of benthic food resources even in the presence of a presumably preferred zooplankton prey, calling to question the long-held assumption that benthic resources are unimportant when considering the trophic role of freshwater mysids of the M. relicta group.


2009 ◽  
Vol 6 (2) ◽  
pp. 265-269 ◽  
Author(s):  
James C. Lamsdell ◽  
Simon J. Braddy

Gigantism is widespread among Palaeozoic arthropods, yet causal mechanisms, particularly the role of (abiotic) environmental factors versus (biotic) competition, remain unknown. The eurypterids (Arthropoda: Chelicerata) include the largest arthropods; gigantic predatory pterygotids (Eurypterina) during the Siluro-Devonian and bizarre sweep-feeding hibbertopterids (Stylonurina) from the Carboniferous to end-Permian. Analysis of family-level originations and extinctions among eurypterids and Palaeozoic vertebrates show that the diversity of Eurypterina waned during the Devonian, while the Placodermi radiated, yet Stylonurina remained relatively unaffected; adopting a sweep-feeding strategy they maintained their large body size by avoiding competition, and persisted throughout the Late Palaeozoic while the predatory nektonic Eurypterina (including the giant pterygotids) declined during the Devonian, possibly out-competed by other predators including jawed vertebrates.


Sign in / Sign up

Export Citation Format

Share Document