Trophic role of ambush-foraging hydromedusae in the White Sea

2013 ◽  
Vol 34 ◽  
pp. 153-164 ◽  
Author(s):  
Andrey A. Prudkovsky
2018 ◽  
Author(s):  
Nadezhda V. Terekhanova ◽  
Anna E. Barmintseva ◽  
Alexey S. Kondrashov ◽  
Georgii A. Bazykin ◽  
Nikolai S. Mugue

AbstractThreespine sticklebacks adapted to freshwater environments all over the Northern Hemisphere. This adaptation involved parallel recruitment of freshwater alleles in clusters of closely linked sites, or divergence islands (DIs). However, it is unclear to what extent the DIs involved in adaptation and the alleles within them coincide between populations adapting to similar environments. Here, we examine 10 freshwater populations of similar ages from the White Sea basin, and study the repeatability of patterns of adaptation in them. Overall, the 65 detected DIs tend to reside in regions of low recombination, underlining the role of reduced recombination in their establishment. Moreover, the DIs are clustered in the genome to the extent that is not explainable by the recombination rate alone, consistent with the divergence hitchhiking model. 21 out of the 65 DIs are universal; i.e., the frequency of freshwater alleles in them is increased in all analyzed populations. Universal DIs tend to have longer core region shared between populations, and the divergence between the marine and the freshwater haplotypes in them is higher, implying that they are older, also consistently with divergence hitchhiking. Within most DIs, the same set of sites distinguished the marine and the freshwater haplotypes in all populations; however, in some of the DIs, the genetic architecture of the freshwater haplotype differed between populations, suggesting that they could have been established by soft selective sweeps.


2014 ◽  
Vol 457 (1) ◽  
pp. 155-157 ◽  
Author(s):  
N. N. Fokina ◽  
T. R. Ruokolainen ◽  
I. N. Bakhmet ◽  
N. N. Nemova

2005 ◽  
Vol 9 (1/2) ◽  
pp. 57-66 ◽  
Author(s):  
V. R. Shevchenko ◽  
Y. S. Dolotov ◽  
N. N. Filatov ◽  
T. N. Alexeeva ◽  
A. S. Filippov ◽  
...  

Abstract. The biogeochemistry of the river-sea interface was studied in the Kem' River (the largest river flowing to the White Sea from Karelian coast) estuary and adjacent area of the White Sea onboard the RV "Ekolog" in summer 2001, 2002 and 2003. The study area can be divided into 3 zones: I - the estuary itself, with water depth from 1 to 5m and low salinity in the surface layer (salinity is lower than 0.2psu in the Kem' River and varies from 15 to 20psu in outer part of this zone); II - the intermediate zone with depths from 5 to 10m and salinity at the surface from 16 to 22psu; III - the marine zone with depths from 10 to 29 m and salinity 21-24.5psu. Highest concentrations of the suspended particulate matter (SPM) were registered in the Kem' mouth (5-7mg/l). They sharply decreased to values <1mg/l towards the sea. At beginning of July 2001, particulate organic carbon (POC) concentration in the river mouth was 404µg/l and POC content in total SPM was 5.64%. In the marine part of the studied area the POC concentration varied from 132 to 274µg/l and the POC contents in suspended matter increased to 19-52.6%. These studies show, that the majority of riverborne suspended matter in the Kem' estuary deposits near the river mouth within the 20psu isohaline, where sedimentation of the suspended matter takes place. The role of fresh-water phytoplankton species decreases and the role of marine species increases from the river to sea and the percentage of green algae decreases and the role of diatoms increases. The organic carbon (Corg) to nitrogen (N) ratio (Corg/N) in both suspended matter and bottom sediments decreases from the river to the marine part of the mixing zone (from 8.5 to 6.1 in the suspended matter and from 14.6 to 7.5 in the bottom sediments), demonstrating that content of terrestrial-derived organic matter decreases and content of marine organic matter increases from the river mouth to the sea. The Kem' estuary exhibits a similar character of biogeochemial processes as in the large Arctic estuaries, but the scale of these processes (amount of river input of SPM, POC, area of estuaries) is different.


Author(s):  
Evgeny A. Genelt-Yanovskiy ◽  
Dmitriy A. Aristov ◽  
Alexey V. Poloskin ◽  
Sophia A. Nazarova

Long-term population dynamics of marine invertebrates can be shaped by environmental conditions as well as biotic factors, including predation, diseases, interspecific or intraspecific competition. Towards the northern edge of species ranges the role of biotic interactions gradually decreases while the impact of climate oscillations becomes more important. This study examined the long-term changes in abundance, individual growth rates and shell shape characteristics of Macoma balthica, one of the dominant species in White Sea soft-bottom intertidal communities. To test the role of predators in changes in clam abundance, we examined the number of moonsnails Amauropsis islandica. Macoma balthica exhibited spatially synchronous population dynamics at six sites in Kandalaksha Bay, where densities of clams varied between 140 and 8500 ind. m−2 during the 21-year period of observations. Statistical modelling using generalized additive models (GAM) shows that a combination of mild winter and warm summer led to an increase in M. balthica density the following year. Predation by A. islandica had no impact on changes in M. balthica density. Growth rates of M. balthica were higher during a cool decade, but clams that lived in a warmer period were characterized by more globose shells. Our results suggest that the climate oscillations can be regarded as the key factor causing the shift in abundance of M. balthica in the White Sea during the last two decades via recruitment and survival.


Sign in / Sign up

Export Citation Format

Share Document