scholarly journals A mathematical model of the footprint of the CO2 plume during and after injection in deep saline aquifer systems

2009 ◽  
Vol 1 (1) ◽  
pp. 3429-3436 ◽  
Author(s):  
Christopher W. MacMinn ◽  
Ruben Juanes
2019 ◽  
Vol 23 (Suppl. 3) ◽  
pp. 917-925
Author(s):  
Huimin Wang ◽  
J.G. Wang ◽  
Xiaolin Wang ◽  
Fakai Dou ◽  
Bowen Hu

This study investigated the thermal effects of thermal stress and Joule-Thomson cooling on CO2 migration in a deep saline aquifer through a hydro-thermal-mechanical model. Firstly, the temperature variation of injected CO2 was analyzed through the coupling of two-phase flow, deformation of porous medium and heat transfer with Joule-Thomson effect. Then, the effect of capillary entry pressure on CO2 plume was numerically investigated and compared. It is found that injection temperature and Joule-Thomson effect can significantly affect the distributions of CO2 mass and temperature, particularly in the upper zone near the injection well. The reduction of capillary entry pressure accelerates the upward migration of CO2 plume and increases the CO2 lateral migration distance.


Author(s):  
Zheming Zhang ◽  
Ramesh Agarwal

With recent concerns on CO2 emissions from coal fired electricity generation plants; there has been major emphasis on the development of safe and economical Carbon Dioxide Capture and Sequestration (CCS) technology worldwide. Saline reservoirs are attractive geological sites for CO2 sequestration because of their huge capacity for sequestration. Over the last decade, numerical simulation codes have been developed in U.S, Europe and Japan to determine a priori the CO2 storage capacity of a saline aquifer and provide risk assessment with reasonable confidence before the actual deployment of CO2 sequestration can proceed with enormous investment. In U.S, TOUGH2 numerical simulator has been widely used for this purpose. However at present it does not have the capability to determine optimal parameters such as injection rate, injection pressure, injection depth for vertical and horizontal wells etc. for optimization of the CO2 storage capacity and for minimizing the leakage potential by confining the plume migration. This paper describes the development of a “Genetic Algorithm (GA)” based optimizer for TOUGH2 that can be used by the industry with good confidence to optimize the CO2 storage capacity in a saline aquifer of interest. This new code including the TOUGH2 and the GA optimizer is designated as “GATOUGH2”. It has been validated by conducting simulations of three widely used benchmark problems by the CCS researchers worldwide: (a) Study of CO2 plume evolution and leakage through an abandoned well, (b) Study of enhanced CH4 recovery in combination with CO2 storage in depleted gas reservoirs, and (c) Study of CO2 injection into a heterogeneous geological formation. Our results of these simulations are in excellent agreement with those of other researchers obtained with different codes. The validated code has been employed to optimize the proposed water-alternating-gas (WAG) injection scheme for (a) a vertical CO2 injection well and (b) a horizontal CO2 injection well, for optimizing the CO2 sequestration capacity of an aquifer. These optimized calculations are compared with the brute force nearly optimized results obtained by performing a large number of calculations. These comparisons demonstrate the significant efficiency and accuracy of GATOUGH2 as an optimizer for TOUGH2. This capability holds a great promise in studying a host of other problems in CO2 sequestration such as how to optimally accelerate the capillary trapping, accelerate the dissolution of CO2 in water or brine, and immobilize the CO2 plume.


2017 ◽  
Vol 57 (1) ◽  
pp. 100 ◽  
Author(s):  
Emad A. Al-Khdheeawi ◽  
Stephanie Vialle ◽  
Ahmed Barifcani ◽  
Mohammad Sarmadivaleh ◽  
Stefan Iglauer

CO2 migration and storage capacity are highly affected by various parameters (e.g. reservoir temperature, vertical to horizontal permeability ratio, cap rock properties, aquifer depth and the reservoir heterogeneity). One of these parameters, which has received little attention, is brine salinity. Although brine salinity has been well demonstrated previously as a factor affecting rock wettability (i.e. higher brine salinity leads to more CO2-wet rocks), its effect on the CO2 storage process has not been addressed effectively. Thus, we developed a three-dimensional homogeneous reservoir model to simulate the behaviour of a CO2 plume in a deep saline aquifer using five different salinities (ranging from 2000 to 200 000 ppm) and have predicted associated CO2 migration patterns and trapping capacities. CO2 was injected at a depth of 1408 m for a period of 1 year at a rate of 1 Mt year–1 and then stored for the next 100 years. The results clearly indicate that 100 years after the injection of CO2 has stopped, the salinity has a significant effect on the CO2 migration distance and the amount of mobile, residual and dissolved CO2. First, the results show that higher brine salinity leads to an increase in CO2 mobility and CO2 migration distance, but reduces the amount of residually trapped CO2. Furthermore, high brine salinity leads to reduced dissolution trapping. Thus, we conclude that less-saline aquifers are preferable CO2 sinks.


2017 ◽  
Vol 9 (4) ◽  
pp. 98
Author(s):  
Mumuni Amadu ◽  
Adango Miadonye

To reduce current high concentrations of anthropogenic greenhouse gases in the atmosphere to levels stipulated by the Intergovernmental Panel on Climate Change, geological sequestration has been universally proposed. On the basis of cost analysis and global availability, deep saline aquifers are the prime targets for most proposed commercial and pilot scale projects.While the geological storage of anthropogenic carbon dioxide is expected to mitigate global warming, the technical aspects of the injection deserve to be considered for efficient injection projects. The water rock interaction phenomenon occurs due to carbonic acid generation which causes surface protonation reactions and has the potential to decrease water wettability of the system leading to enhanced water mobility and efficient gas injection. Therefore, for a saline aquifer rock with minerals capable of ion exchange reactions that consume solution protons, the wettability of such a system is likely to be preserved leading to reduced water mobility and poor gas injection. Generally, the extents to which surface protonation and ion exchange reactions occur depend on the free energy change of the reaction.In this paper, we have carried out thermodynamic computations for the free energies of surface protonation and ion exchange reactions. Based on the values of computed free energies, which show that ion exchange reactions have lower free energies, we have discussed the wettability implications for geological storage in silica rich saline aquifer systems.


Sign in / Sign up

Export Citation Format

Share Document