scholarly journals Fuzzy Control Adaptive of a Matrix Converter for Harmonic Compensation Caused by Nonlinear Loads

2012 ◽  
Vol 18 ◽  
pp. 715-723 ◽  
Author(s):  
A. Boukadoum ◽  
T. Bahi ◽  
S. Oudina ◽  
Y. souf ◽  
S. Lekhchine
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Arjun Baliyan ◽  
Majid Jamil ◽  
M. Rizwan ◽  
Ibrahim Alsaidan ◽  
Muhannad Alaraj

The quality of power that is degrading day by day is an important issue for all the consumers. The important factor for this is harmonics in the voltage and current waveforms which can be resolved by the use of hybrid series active power filter. The combination consists of a series active power filter and a shunt passive filter connected in parallel to the load. The method used in this paper is for the purpose of achieving good harmonic compensation and reduced total harmonic distortion for various types of nonlinear loads as per the standards of IEEE 519. The proposed HSAPF technique uses the synchronous reference frame method for generating the compensating signal with an intelligent PI controller that uses particle swarm optimization (PSO) technique to obtain the required gain values needed to improve the steady state response of the system. The concept of vigorous HSAPF has been authenticated through MATLAB simulation analysis, and the results obtained validate the accuracy of the method for the different load conditions.


2021 ◽  
Vol 13 (17) ◽  
pp. 9715
Author(s):  
Zahra Malekjamshidi ◽  
Mohammad Jafari ◽  
Jianguo Zhu ◽  
Marco Rivera ◽  
Wen Soong

This paper deals with the design, control, and implementation of a three-phase ac–ac mobile utility power supply using a matrix converter for airplane servicing applications. Using a matrix converter as a compact direct ac-to-ac converter can provide savings in terms of the size and cost of a mobile power supply compared to common back-to-back converters. Furthermore, using the proposed direct matrix converter eliminates the need for bulky electrolytic capacitors and increases the system’s reliability and lifetime. A finite control set model predictive control is used to generate a high-quality 115 V/400 Hz output voltage and a low-harmonic-distortion source current with a unity input power factor for various load conditions, including balanced, unbalanced, linear, and nonlinear loads. The predictive strategy is used to control the output voltage and source current for each possible switching state in order to simultaneously track the references. To achieve a further reduction in the system’s size and cost, an active damping strategy is used to compensate for the instability caused by the input filter in contrast to the passive method. Experimental tests were conducted on a prototype matrix converter to validate the performance of the proposed control strategy.


Sign in / Sign up

Export Citation Format

Share Document