Harmonic compensation of nonlinear loads using current controlled, grid connected DG unit

Author(s):  
Kaushalya Parade ◽  
Sudhir Mane
2012 ◽  
Vol 18 ◽  
pp. 715-723 ◽  
Author(s):  
A. Boukadoum ◽  
T. Bahi ◽  
S. Oudina ◽  
Y. souf ◽  
S. Lekhchine

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Arjun Baliyan ◽  
Majid Jamil ◽  
M. Rizwan ◽  
Ibrahim Alsaidan ◽  
Muhannad Alaraj

The quality of power that is degrading day by day is an important issue for all the consumers. The important factor for this is harmonics in the voltage and current waveforms which can be resolved by the use of hybrid series active power filter. The combination consists of a series active power filter and a shunt passive filter connected in parallel to the load. The method used in this paper is for the purpose of achieving good harmonic compensation and reduced total harmonic distortion for various types of nonlinear loads as per the standards of IEEE 519. The proposed HSAPF technique uses the synchronous reference frame method for generating the compensating signal with an intelligent PI controller that uses particle swarm optimization (PSO) technique to obtain the required gain values needed to improve the steady state response of the system. The concept of vigorous HSAPF has been authenticated through MATLAB simulation analysis, and the results obtained validate the accuracy of the method for the different load conditions.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Joaquín Vaquero ◽  
Nimrod Vázquez ◽  
Ivan Soriano ◽  
Jeziel Vázquez

Solar panels are an attractive and growing source of renewable energy in commercial and residential applications. Its use connected to the grid by means of a power converter results in a grid-connected photovoltaic system. In order to optimize this system, it is interesting to integrate several functionalities into the power converter, such as active power filtering and power factor correction. Nonlinear loads connected to the grid generate current harmonics, which deteriorates the mains power quality. Active power filters can compensate these current harmonics. A photovoltaic system with added harmonic compensation and power factor correction capabilities is proposed in this paper. A sliding mode controller is employed to control the power converter, implemented on the CompactRIO digital platform from National Instruments Corporation, allowing user friendly operation and easy tuning. The power system consists of two stages, a DC/DC boost converter and a single-phase inverter, and it is able to inject active power into the grid while compensating the current harmonics generated by nonlinear loads at the point of common coupling. The operation, design, simulation, and experimental results for the proposed system are discussed.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2618 ◽  
Author(s):  
Hui Li ◽  
Yue Qu ◽  
Junwei Lu ◽  
Shuang Li

This paper proposes a harmonic compensation control with disturbance rejection function for a standalone inverter. Due to the LC type three-phase three-leg inverter is connected to nonlinear loads, low-order harmonic components appears in the inverter output current. These harmonic current generate harmonic voltage drops when flowing through the filter inductor and the feeder impedance, which causes the output voltage of the inverter distorted. In order to compensate harmonics and produce sinusoidal voltage without additional compensation devices, virtual harmonic impedance method can be added to the fundamental voltage control. Due to the compensation effect of virtual harmonic impedance are very sensitive to the fluctuation of filter inductance. Therefore, inductance variation, as a disturbance in physical system, should be considered. In this paper, linear active disturbance rejection control (LADRC) is proposed in the fundamental voltage control loop to reduce the sensitivity of virtual harmonic impedance and decouple the model. Compared with traditional dual-loop PI control, the proposed strategy has faster dynamic response in control performance and fewer acquisition modules in engineering applications. The whole design process of virtual harmonic impedance and stability analyses of this strategy are provided. The simulation and experiment results show the good performance of the proposed strategy.


Sign in / Sign up

Export Citation Format

Share Document