scholarly journals Levelized Cost of Heat for Linear Fresnel Concentrated Solar Systems

2014 ◽  
Vol 49 ◽  
pp. 1340-1349 ◽  
Author(s):  
R. Gabbrielli ◽  
P. Castrataro ◽  
F. Del Medico ◽  
M. Di Palo ◽  
B. Lenzo
2020 ◽  
Vol 12 (6) ◽  
pp. 2322 ◽  
Author(s):  
Calvin Kong Leng Sing ◽  
Jeng Shiun Lim ◽  
Timothy Gordon Walmsley ◽  
Peng Yen Liew ◽  
Masafumi Goto ◽  
...  

Solar energy is currently an underutilized renewable energy source that could fulfill low-temperature industrial heat demands with significant potential in high solar irradiance counties such as Malaysia. This study proposes a new systematic method for optimization of solar heat integration for different process options to minimize the levelized cost of heat by combining different methods from the literature. A case study from the literature is presented to demonstrate the proposed method combined with meteorological data in Malaysia. The method estimates capital cost and levelized cost of solar heating considering important physical constraints (e.g., available space) and recovery of waste heat. The method determines and optimizes important physical dimensions, including collector area, storage size, and control design. As the result of the case study, the solar thermal integration with Clean-In-Place streams (hot water) gives the lowest levelized cost of heat with RM 0.63/kWh (0.13 EUR/kWh) due to its lowest process temperature requirement. The sensitivity analysis indicates that collector price and collector efficiency are the critical parameters of solar thermal integration.


Author(s):  
Birgit Gobereit ◽  
Lars Amsbeck ◽  
Reiner Buck ◽  
Csaba Singer

The potential for highly efficient and cost competitive solar energy collection at high temperatures drives the actual research and development activities for particle tower systems. One promising concept for particle receivers is the falling particle receiver. This paper is related to a particle receiver, in which falling ceramic particles form a particle curtain, which absorbs the concentrated solar radiation. Complex operation strategies will result in higher receiver costs, for both investment and operation. The objective of this paper is to assess the influence of the simultaneous variation of receiver costs and efficiency characteristics on levelized cost of heat (LCOH) and on levelized cost of electricity (LCOE). Applying cost assumptions for the particle receiver and the particle transport system, the LCOE are estimated and compared for each considered concept. The power level of the compared concepts is 125 MWel output at design point. The sensitivity of the results on the specific cost assumptions is analyzed. No detailed evaluation is done for the thermal storage, but comparable storage utilization and costs are assumed for all cases.


Author(s):  
Cathy Frantz ◽  
Reiner Buck ◽  
Lars Amsbeck

Abstract A numerical model of the CentRec® receiver has been developed and validated using the measurement data collected during the experimental test campaign of the centrifugal particle system at the solar tower Jülich. The model has been used to calculate the thermo-optical efficiency of a scaled-up 20 MWth receiver for various receiver geometries. A cost function has been deduced and was used to perform a technoeconomic optimization on an LCOH (levelized cost of heat) basis of the CentRec® receiver concept. Attractive LCOH as low as 0.0209 €/kWhth for a system with thermal storage, or as low as 0.0150 €/kWhth for the LCOH without storage, are predicted. This study has shown that the optimal configuration from an LCOH perspective for a 20 MWth centrifugal particle receiver reaches specific receiver costs of 35 €/kWth. Hereby the costs of the receiver can be reduced by 60 % compared to the original configuration.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4385
Author(s):  
Jacopo Buongiorno ◽  
Ben Carmichael ◽  
Bradley Dunkin ◽  
John Parsons ◽  
Dirk Smit

We introduce the concept of the nuclear battery, a standardized, factory-fabricated, road transportable, plug-and-play micro-reactor. Nuclear batteries have the potential to provide on-demand, carbon-free, economic, resilient, and safe energy for distributed heat and electricity applications in every sector of the economy. The cost targets for nuclear batteries in these markets are 20–50 USD/MWht (6–15 USD/MMBTU) and 70–115 USD/MWhe for heat and electricity, respectively. We present a parametric study of the nuclear battery’s levelized cost of heat and electricity, suggesting that those cost targets are within reach. The cost of heat and electricity from nuclear batteries is expected to depend strongly on core power rating, fuel enrichment, fuel burnup, size of the onsite staff, fabrication costs and financing. Notional examples of cheap and expensive nuclear battery designs are provided.


Author(s):  
Georgi Todorov ◽  
Krasimira Keremidchieva

On the go is the development and adaptation of an individual target for Bulgaria, in order to increase the share of RES energy, according to the EU common vision for leadership in the implementation of renewables to 32% in the gross final consumption by 2030. The technological progress, the easy applicability and feasibility of the projects, as well as the geographic and climatic specifics of Bulgaria, makes photovoltaic Bulgaria's main candidate for leading technology in this process. With net specific production of 1323kWh/annual per installed kWp, price levels of PV technology of €1360kWp and Levelized cost of energy (LCOE) below €0.12kWh for 20 years time frame, households in Bulgaria are at a stage where photovoltaic projects should be developed as an alternative to the grid supply


Author(s):  
Vinothini Kasinathan ◽  
◽  
Aida Mustapha ◽  
Muhammad Azani Hasibuan ◽  
Aida Zamnah Zainal Abidin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document