levelized cost of heat
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 9)

H-INDEX

2
(FIVE YEARS 1)

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8546
Author(s):  
Jaume Fitó ◽  
Neha Dimri ◽  
Julien Ramousse

This study evaluates the effects of pooling heat demands in a district for the purpose of upscaling heat production units by means of energy, exergy, economic, exergoeconomic, and environmental indicators, as well as the sensitivity to investment and fuel costs. The following production systems to satisfy the heat demands (domestic hot water production and space heating) of a mixed district composed of office (80%), residential (15%), and commercial (5%) buildings are considered: gas- and biomass-fired boilers, electric boilers and heat pumps (grid-powered or photovoltaic -powered), and solar thermal collectors. For comparison, three system sizing approaches are examined: at building scale, at sector scale (residential, office, and commerce), or at district scale. For the configurations studied, the upscaling benefits were up to 5% higher efficiency (energy and exergy), there was lower levelized cost of heat for all systems (between 20% and 54%), up to 55% lower exergy destruction costs, and up to 5% greater CO2 mitigations. In conclusion, upscaling and demand pooling tend to improve specific efficiencies, reduce specific costs, reduce total investment through the peak power sizing method, and mitigate temporal mismatch in solar-driven systems. Possible drawbacks are additional heat losses due to the distribution network and reduced performance in heat pumps due to the higher temperatures required. Nevertheless, the advantages outweigh the drawbacks in most cases.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4385
Author(s):  
Jacopo Buongiorno ◽  
Ben Carmichael ◽  
Bradley Dunkin ◽  
John Parsons ◽  
Dirk Smit

We introduce the concept of the nuclear battery, a standardized, factory-fabricated, road transportable, plug-and-play micro-reactor. Nuclear batteries have the potential to provide on-demand, carbon-free, economic, resilient, and safe energy for distributed heat and electricity applications in every sector of the economy. The cost targets for nuclear batteries in these markets are 20–50 USD/MWht (6–15 USD/MMBTU) and 70–115 USD/MWhe for heat and electricity, respectively. We present a parametric study of the nuclear battery’s levelized cost of heat and electricity, suggesting that those cost targets are within reach. The cost of heat and electricity from nuclear batteries is expected to depend strongly on core power rating, fuel enrichment, fuel burnup, size of the onsite staff, fabrication costs and financing. Notional examples of cheap and expensive nuclear battery designs are provided.


2021 ◽  
Vol 246 ◽  
pp. 09004
Author(s):  
Oddgeir Gudmundsson ◽  
Anders Dyrelund ◽  
Jan Eric Thorsen

In a pursuit to increase the efficiency of district heating system there has been a continuous focus to reduce the system operating temperatures. This has led to the current state of the art district heating systems, commonly referred to as the 4th generation district heating, also known as low temperature district heating (LTDH). The success of the LTDH has fuelled a lot of research interest in district energy systems, one of the new research topics has been focusing on reducing the operating temperatures down to the ambient temperature (ATDH), commonly referred as 5th generation district heating. In these systems the supply temperature is insufficient for fulfilling the heating demands of the connected buildings, which then requires end-user located heat pumps to raise the supply temperature to the level required by the buildings. As of today, number of ATDH systems have been realized as part of various research projects. The question however remains if ATDH brings additional benefits compared to LTDH. This paper compares the levelized cost of heat from these two systems types for two countries with different climate zones. The results of the analysis indicate that LTDH is the favourable solution in both countries.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 131
Author(s):  
Alaric Christian Montenon ◽  
Costas Papanicolas

The present study evaluates the potential upgrade of a Linear Fresnel Reflector (LFR) collector at the Cyprus Institute (CyI) with photovoltaics via the calculation of the Levelized Cost Of Heat (LCOH). For over 4 years the collector has been supplying heating and cooling to the Novel Technologies Laboratory (NTL) of the Cyprus Institute (CyI). Extensive measurements have been carried out both on the LFR and NTL to render real numbers in the computations. This hybridization would be undertaken with the installation of PV arrays under mirrors, so that the collector is able to either reflect direct radiation to the receiver to process heat or to produce electricity directly in the built environment. The main objective is the decrease of the LCOH of Linear Fresnel collectors, which hinders their wider deployment, while air conditioning demand is globally booming. The results show that the LCOH for a small LFR to supply air conditioning is high, c€25.2–30.1 per kWh, while the innovative PV hybridization proposed here decreases it. The value of the study resides in the real data collected in terms of thermal efficiency, operation, and maintenance.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5681
Author(s):  
Iván Acosta-Pazmiño ◽  
Carlos Rivera-Solorio ◽  
Miguel Gijón-Rivera

This study presents a techno-economic performance evaluation of a hybrid low-concentrating photovoltaic/thermal (LCPV/T) plant, which operates in a student sports and wellness center building situated at a university campus in Mexico. The solar plant comprises 144 LCPV/T collectors based on a hybridized version of a local parabolic trough technology. Dynamic thermal and electrical performance analyses were performed in the TRNSYS simulation studio. The results showed that the solar field could cover up to 72% of the hot water demand of the building during the summer season and 24% during the winter season. The hybrid system could annually save 7185 USD, accounting for heat (natural gas boiler) and electricity generation. However, the payback time was of 19.23 years, which was mainly attributed to a reduced natural gas price in Monterrey, Mexico. A new approach to evaluating the equivalent levelized cost of heat (LCOHeq), is proposed. This results in an LCOHeq of 0.065 USD/kWh, which is nearly equivalent to the LCOH of a natural gas-fired boiler (0.067 USD/kWh). Finally, the hybrid plant could achieve a specific CO2e emission reduction of 77.87 kg CO2e per square meter of the required installation area.


Author(s):  
Cathy Frantz ◽  
Reiner Buck ◽  
Lars Amsbeck

Abstract A numerical model of the CentRec® receiver has been developed and validated using the measurement data collected during the experimental test campaign of the centrifugal particle system at the solar tower Jülich. The model has been used to calculate the thermo-optical efficiency of a scaled-up 20 MWth receiver for various receiver geometries. A cost function has been deduced and was used to perform a technoeconomic optimization on an LCOH (levelized cost of heat) basis of the CentRec® receiver concept. Attractive LCOH as low as 0.0209 €/kWhth for a system with thermal storage, or as low as 0.0150 €/kWhth for the LCOH without storage, are predicted. This study has shown that the optimal configuration from an LCOH perspective for a 20 MWth centrifugal particle receiver reaches specific receiver costs of 35 €/kWth. Hereby the costs of the receiver can be reduced by 60 % compared to the original configuration.


2020 ◽  
Vol 12 (6) ◽  
pp. 2402
Author(s):  
Zaharaddeen Ali Hussaini ◽  
Peter King ◽  
Chris Sansom

In power tower systems, the heliostat field is one of the essential subsystems in the plant due to its significant contribution to the plant’s overall power losses and total plant investment cost. The design and optimization of the heliostat field is hence an active area of research, with new field improvement processes and configurations being actively investigated. In this paper, a different configuration of a multi-tower field is explored. This involves adding an auxiliary tower to the field of a conventional power tower Concentrated Solar Power (CSP) system. The choice of the position of the auxiliary tower was based on the region in the field which has the least effective reflecting heliostats. The multi-tower configuration was initially applied to a 50 MWth conventional field in the case study region of Nigeria. The results from an optimized field show a marked increase in the annual thermal energy output and mean annual efficiency of the field. The biggest improvement in the optical efficiency loss factors be seen from the cosine, which records an improvement of 6.63%. Due to the size of the field, a minimal increment of 3020 MWht in the Levelized Cost of Heat (LCOH) was, however, recorded. In much larger fields, though, a higher number of weaker heliostats were witnessed in the field. The auxiliary tower in the field provides an alternate aim point for the weaker heliostat, thereby considerably cutting down on some optical losses, which in turn gives rise to higher energy output. At 400 MWth, the multi-tower field configuration provides a lower LCOH than the single conventional power tower field.


2020 ◽  
Vol 12 (6) ◽  
pp. 2322 ◽  
Author(s):  
Calvin Kong Leng Sing ◽  
Jeng Shiun Lim ◽  
Timothy Gordon Walmsley ◽  
Peng Yen Liew ◽  
Masafumi Goto ◽  
...  

Solar energy is currently an underutilized renewable energy source that could fulfill low-temperature industrial heat demands with significant potential in high solar irradiance counties such as Malaysia. This study proposes a new systematic method for optimization of solar heat integration for different process options to minimize the levelized cost of heat by combining different methods from the literature. A case study from the literature is presented to demonstrate the proposed method combined with meteorological data in Malaysia. The method estimates capital cost and levelized cost of solar heating considering important physical constraints (e.g., available space) and recovery of waste heat. The method determines and optimizes important physical dimensions, including collector area, storage size, and control design. As the result of the case study, the solar thermal integration with Clean-In-Place streams (hot water) gives the lowest levelized cost of heat with RM 0.63/kWh (0.13 EUR/kWh) due to its lowest process temperature requirement. The sensitivity analysis indicates that collector price and collector efficiency are the critical parameters of solar thermal integration.


Sign in / Sign up

Export Citation Format

Share Document