Design and Cost Study of Improved Scaled-Up Centrifugal Particle Receiver Based on Simulation

Author(s):  
Cathy Frantz ◽  
Reiner Buck ◽  
Lars Amsbeck

Abstract A numerical model of the CentRec® receiver has been developed and validated using the measurement data collected during the experimental test campaign of the centrifugal particle system at the solar tower Jülich. The model has been used to calculate the thermo-optical efficiency of a scaled-up 20 MWth receiver for various receiver geometries. A cost function has been deduced and was used to perform a technoeconomic optimization on an LCOH (levelized cost of heat) basis of the CentRec® receiver concept. Attractive LCOH as low as 0.0209 €/kWhth for a system with thermal storage, or as low as 0.0150 €/kWhth for the LCOH without storage, are predicted. This study has shown that the optimal configuration from an LCOH perspective for a 20 MWth centrifugal particle receiver reaches specific receiver costs of 35 €/kWth. Hereby the costs of the receiver can be reduced by 60 % compared to the original configuration.

Author(s):  
Yibo Liang ◽  
Longbin Tao

A numerical study on flow over a stationary deep-draft semi-submersible (DDS) with various corner shapes was carried out to investigate the corner shape effects on the overall hydrodynamics. Three models based on a typical DDS design with different corner shapes were numerically investigated under 45° incidence. The present numerical model has been validated by an experimental test carried out in a circulating water channel. It is demonstrated that, as the corner shape design changed, the hydrodynamic characteristics alter drastically. In addition, the flow patterns were examined to reveal some insights of the fluid physics due to the changing of different corner shape designs. The detailed numerical results from the geometric study will provide a good guidance for future practical designs.


2019 ◽  
Vol 9 (20) ◽  
pp. 4289 ◽  
Author(s):  
Sangki Park

In South Korea, the construction of new multi-unit residential structures has been continuously increasing in order to accommodate multiple households in single structures. However, the presence of walls and floors shared with neighbors makes these structures exceptionally vulnerable to floor noise transmission when the noise of everyday life occurs. In particular, South Korea has many social problems associated with such floor noise, which require the utmost attention and immediate resolution. In this study, a 17-story structure was selected as a test structure. Field measurements were carried out. A numerical model for the 17-story structure was developed in order to perform a vibro-acoustic analysis. The validation of the numerical model comparing with the field measurement data results shows a good agreement. Finally, it is concluded that numerical analysis can be applied to resolve floor noise problems arising in multi-unit residential structures.


2019 ◽  
Vol 254 ◽  
pp. 05008 ◽  
Author(s):  
Piotr Bartkowski ◽  
Robert Zalewski

In this work the experimental test of Vacuum Packed Particles (VPP) under 3-point bending are presented. VPP it is the structure compose of grains inside the plastomer coating. When the pressure inside is equal or higher than zero structure behave like a liquid, otherwise like a elasto-plastic solid. Three types of grain material and different values of underpressure were tested. Results presented in this paper will be used in the further work for the numerical model validation procedure.


2020 ◽  
Vol 12 (6) ◽  
pp. 2322 ◽  
Author(s):  
Calvin Kong Leng Sing ◽  
Jeng Shiun Lim ◽  
Timothy Gordon Walmsley ◽  
Peng Yen Liew ◽  
Masafumi Goto ◽  
...  

Solar energy is currently an underutilized renewable energy source that could fulfill low-temperature industrial heat demands with significant potential in high solar irradiance counties such as Malaysia. This study proposes a new systematic method for optimization of solar heat integration for different process options to minimize the levelized cost of heat by combining different methods from the literature. A case study from the literature is presented to demonstrate the proposed method combined with meteorological data in Malaysia. The method estimates capital cost and levelized cost of solar heating considering important physical constraints (e.g., available space) and recovery of waste heat. The method determines and optimizes important physical dimensions, including collector area, storage size, and control design. As the result of the case study, the solar thermal integration with Clean-In-Place streams (hot water) gives the lowest levelized cost of heat with RM 0.63/kWh (0.13 EUR/kWh) due to its lowest process temperature requirement. The sensitivity analysis indicates that collector price and collector efficiency are the critical parameters of solar thermal integration.


2014 ◽  
Vol 49 ◽  
pp. 1340-1349 ◽  
Author(s):  
R. Gabbrielli ◽  
P. Castrataro ◽  
F. Del Medico ◽  
M. Di Palo ◽  
B. Lenzo

2020 ◽  
Vol 12 (6) ◽  
pp. 2402
Author(s):  
Zaharaddeen Ali Hussaini ◽  
Peter King ◽  
Chris Sansom

In power tower systems, the heliostat field is one of the essential subsystems in the plant due to its significant contribution to the plant’s overall power losses and total plant investment cost. The design and optimization of the heliostat field is hence an active area of research, with new field improvement processes and configurations being actively investigated. In this paper, a different configuration of a multi-tower field is explored. This involves adding an auxiliary tower to the field of a conventional power tower Concentrated Solar Power (CSP) system. The choice of the position of the auxiliary tower was based on the region in the field which has the least effective reflecting heliostats. The multi-tower configuration was initially applied to a 50 MWth conventional field in the case study region of Nigeria. The results from an optimized field show a marked increase in the annual thermal energy output and mean annual efficiency of the field. The biggest improvement in the optical efficiency loss factors be seen from the cosine, which records an improvement of 6.63%. Due to the size of the field, a minimal increment of 3020 MWht in the Levelized Cost of Heat (LCOH) was, however, recorded. In much larger fields, though, a higher number of weaker heliostats were witnessed in the field. The auxiliary tower in the field provides an alternate aim point for the weaker heliostat, thereby considerably cutting down on some optical losses, which in turn gives rise to higher energy output. At 400 MWth, the multi-tower field configuration provides a lower LCOH than the single conventional power tower field.


Author(s):  
Birgit Gobereit ◽  
Lars Amsbeck ◽  
Reiner Buck ◽  
Csaba Singer

The potential for highly efficient and cost competitive solar energy collection at high temperatures drives the actual research and development activities for particle tower systems. One promising concept for particle receivers is the falling particle receiver. This paper is related to a particle receiver, in which falling ceramic particles form a particle curtain, which absorbs the concentrated solar radiation. Complex operation strategies will result in higher receiver costs, for both investment and operation. The objective of this paper is to assess the influence of the simultaneous variation of receiver costs and efficiency characteristics on levelized cost of heat (LCOH) and on levelized cost of electricity (LCOE). Applying cost assumptions for the particle receiver and the particle transport system, the LCOE are estimated and compared for each considered concept. The power level of the compared concepts is 125 MWel output at design point. The sensitivity of the results on the specific cost assumptions is analyzed. No detailed evaluation is done for the thermal storage, but comparable storage utilization and costs are assumed for all cases.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hua Kuang ◽  
Risheng Qin ◽  
Mi He ◽  
Xin He ◽  
Ruimin Duan ◽  
...  

For any power system, the reliability of measurement data is essential in operation, management and also in planning. However, it is inevitable that the measurement data are prone to outliers, which may impact the results of data-based applications. In order to improve the data quality, the outliers cleaning method for measurement data in the distribution network is studied in this paper. The method is based on a set of association rules (AR) that are automatically generated form historical measurement data. First, the association rules are mining in conjunction with the density-based spatial clustering of application with noise (DBSCAN), k-means and Apriori technique to detect outliers. Then, for the outliers repairing process after outliers detection, the proposed method uses a distance-based model to calculate the repairing cost of outliers, which describes the similarity between outlier and normal data. Besides, the Mahalanobis distance is employed in the repairing cost function to reduce the errors, which could implement precise outliers cleaning of measurement data in the distribution network. The test results for the simulated datasets with artificial errors verify that the superiority of the proposed outliers cleaning method for outliers detection and repairing.


Sign in / Sign up

Export Citation Format

Share Document