scholarly journals Application of the Complex Network Theory in Urban Environments. A Case Study in Catania

2016 ◽  
Vol 101 ◽  
pp. 345-351 ◽  
Author(s):  
Alberto Fichera ◽  
Mattia Frasca ◽  
Valentina Palermo ◽  
Rosaria Volpe
2019 ◽  
Vol 12 (4) ◽  
pp. 1079-1096 ◽  
Author(s):  
Aimin Wang

Purpose The purpose of this paper is to propose a framework for assessing the vulnerability of projects to crises. The study seeks to clarify the cascade effects of disruptions leading to project crises and to improve project robustness against crises from a systems perspective. Design/methodology/approach A framework for assessing project vulnerability to crises is developed using complex network theory. The framework includes network representation of project systems, analyzing project network topology, simulating the cascade of unexpected disruptions and assessing project vulnerability. Use of the framework is then illustrated by applying it to a case study of a construction project. Findings Project network topology plays a critical role in resisting crises. By increasing the resilience of the critical tasks and adjusting the structure of a project, the complexity and vulnerability of the project can be reduced, which in turn decreases the occurrence of crises. Research limitations/implications The proposed framework is used in a case study. Further studies of its application to projects in diverse industries would be beneficial to enhance the robustness of the results. Practical implications Project crises can threaten the survival of a project and endanger the organization’s security. The proposed framework helps prevent and mitigate project crises by protecting critical tasks and blocking the diffusion path from a systems perspective. Originality/value This paper presents a novel framework based on complex network theory to assess project vulnerability, which provides a systemic understanding of the cascade of disruptions that lead to project crises.


2018 ◽  
Vol 232 ◽  
pp. 01034
Author(s):  
Shaopei Chen ◽  
Dachang Zhuang ◽  
Huixia Zhang

As urban metro network is generally referred as a significant component of the modem urban transport system, the spatiotemporal evolution of spatial layout and topology structure of the network should be investigated and evaluated in order to promote urban transport services and optimize urban spatial pattern. This paper takes a case study of the city of Guangzhou, China, and applies the complex network theory and integrates geography information system (GIS) to explore and discuss the growth and topological structure characteristics of the Guangzhou metro network. Importantly, this paper focuses on accessing the formation process of the topology structure of the Guangzhou metro network from 1997 to 2016 on the basis of spatio-temporal sequence data analysis. This aims to provide scientific references for the future development and planning of urban metro network in China.


2021 ◽  
pp. 1063293X2110031
Author(s):  
Maolin Yang ◽  
Auwal H Abubakar ◽  
Pingyu Jiang

Social manufacturing is characterized by its capability of utilizing socialized manufacturing resources to achieve value adding. Recently, a new type of social manufacturing pattern emerges and shows potential for core factories to improve their limited manufacturing capabilities by utilizing the resources from outside socialized manufacturing resource communities. However, the core factories need to analyze the resource characteristics of the socialized resource communities before making operation plans, and this is challenging due to the unaffiliated and self-driven characteristics of the resource providers in socialized resource communities. In this paper, a deep learning and complex network based approach is established to address this challenge by using socialized designer community for demonstration. Firstly, convolutional neural network models are trained to identify the design resource characteristics of each socialized designer in designer community according to the interaction texts posted by the socialized designer on internet platforms. During the process, an iterative dataset labelling method is established to reduce the time cost for training set labelling. Secondly, complex networks are used to model the design resource characteristics of the community according to the resource characteristics of all the socialized designers in the community. Two real communities from RepRap 3D printer project are used as case study.


Author(s):  
Shuang Song ◽  
Dawei Xu ◽  
Shanshan Hu ◽  
Mengxi Shi

Habitat destruction and declining ecosystem service levels caused by urban expansion have led to increased ecological risks in cities, and ecological network optimization has become the main way to resolve this contradiction. Here, we used landscape patterns, meteorological and hydrological data as data sources, applied the complex network theory, landscape ecology, and spatial analysis technology, a quantitative analysis of the current state of landscape pattern characteristics in the central district of Harbin was conducted. The minimum cumulative resistance was used to extract the ecological network of the study area. Optimized the ecological network by edge-adding of the complex network theory, compared the optimizing effects of different edge-adding strategies by using robustness analysis, and put forward an effective way to optimize the ecological network of the study area. The results demonstrate that: The ecological patches of Daowai, Xiangfang, Nangang, and other old districts in the study area are small in size, fewer in number, strongly fragmented, with a single external morphology, and high internal porosity. While the ecological patches in the new districts of Songbei, Hulan, and Acheng have a relatively good foundation. And ecological network connectivity in the study area is generally poor, the ecological corridors are relatively sparse and scattered, the connections between various ecological sources of the corridors are not close. Comparing different edge-adding strategies of complex network theory, the low-degree-first strategy has the most outstanding performance in the robustness test. The low-degree-first strategy was used to optimize the ecological network of the study area, 43 ecological corridors are added. After the optimization, the large and the small ecological corridors are evenly distributed to form a complete network, the optimized ecological network will be significantly more connected, resilient, and resistant to interference, the ecological flow transmission will be more efficient.


Sign in / Sign up

Export Citation Format

Share Document