scholarly journals Heuristic Planning Method of EV Fast Charging Station on a Freeway Considering the Power Flow Constraints of the Distribution Network

2017 ◽  
Vol 105 ◽  
pp. 2422-2428 ◽  
Author(s):  
Xiaohong Dong ◽  
Yunfei Mu ◽  
Hongjie Jia ◽  
Xiaodan Yu ◽  
Pingliang Zeng
Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2414
Author(s):  
Jan Engelhardt ◽  
Jan Martin Zepter ◽  
Tatiana Gabderakhmanova ◽  
Gunnar Rohde ◽  
Mattia Marinelli

This paper introduces a novel design of an electric vehicle (EV) fast charging station, consisting of a battery energy storage system (BESS) with reconfigurable cell topology. The BESS comprises two battery strings that decouple the power flow between EV and grid, to enable charging powers above the grid capacity. The reconfigurable design is achieved by equipping the battery cells with semiconductor switches and serves two main purposes. First, it aims at solving cell unbalance issues to increase safety, reliability, and lifetime of the battery. Second, it enables the BESS to actively control the EV charging process by changing its cell configuration in a real-time fashion, making a DC-DC converter redundant. The paper presents a modelling approach that captures the reconfigurable design including the controlling algorithm used for cell engagement. The simulation results show that the BESS is able to fulfil the EV request with sufficient accuracy for most of the fast charging process. However, the switching of cells leads to variations in the charging current that can potentially exceed the tolerance band defined in IEC61851-23. Therefore, complementary measures are suggested to achieve a suitable current control during all phases of the charging process. The estimated BESS efficiency during the EV fast charging process is 93.3%. The losses caused by the reconfigurable design amount to 1.2% of the provided energy. It is demonstrated that the proposed design has a competitive efficiency compared to a battery buffered fast charging station with DC-DC converter.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 260
Author(s):  
Jon Anzola ◽  
Iosu Aizpuru ◽  
Asier Arruti

This paper focuses on the design of a charging unit for an electric vehicle fast charging station. With this purpose, in first place, different solutions that exist for fast charging stations are described through a brief introduction. Then, partial power processing architectures are introduced and proposed as attractive strategies to improve the performance of this type of applications. Furthermore, through a series of simulations, it is observed that partial power processing based converters obtain reduced processed power ratio and efficiency results compared to conventional full power converters. So, with the aim of verifying the conclusions obtained through the simulations, two downscaled prototypes are assembled and tested. Finally, it is concluded that, in case galvanic isolation is not required for the charging unit converter, partial power converters are smaller and more efficient alternatives than conventional full power converters.


Sign in / Sign up

Export Citation Format

Share Document