scholarly journals Thermal performance enhancement of energy storage systems via phase change materials utilising an innovative webbed tube heat exchanger

2018 ◽  
Vol 151 ◽  
pp. 57-61
Author(s):  
Ahmed H.N. Al-Mudhafar ◽  
Andrzej F. Nowakowski ◽  
Franck C.G.A. Nicolleau
Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3821
Author(s):  
Kassianne Tofani ◽  
Saeed Tiari

Latent heat thermal energy storage systems (LHTES) are useful for solar energy storage and many other applications, but there is an issue with phase change materials (PCMs) having low thermal conductivity. This can be enhanced with fins, metal foam, heat pipes, multiple PCMs, and nanoparticles (NPs). This paper reviews nano-enhanced PCM (NePCM) alone and with additional enhancements. Low, middle, and high temperature PCM are classified, and the achievements and limitations of works are assessed. The review is categorized based upon enhancements: solely NPs, NPs and fins, NPs and heat pipes, NPs with highly conductive porous materials, NPs and multiple PCMs, and nano-encapsulated PCMs. Both experimental and numerical methods are considered, focusing on how well NPs enhanced the system. Generally, NPs have been proven to enhance PCM, with some types more effective than others. Middle and high temperatures are lacking compared to low temperature, as well as combined enhancement studies. Al2O3, copper, and carbon are some of the most studied NP materials, and paraffin PCM is the most common by far. Some studies found NPs to be insignificant in comparison to other enhancements, but many others found them to be beneficial. This article also suggests future work for NePCM and LHTES systems.


2020 ◽  
Vol 10 (3) ◽  
pp. 5814-5818
Author(s):  
M. A. Aichouni ◽  
N. F. Alshammari ◽  
N. Ben Khedher ◽  
M. Aichouni

The intermittent nature of renewable energy sources such as solar and wind necessitates integration with energy-storage units to enable realistic applications. In this study, thermal performance enhancement of the finned Cylindrical Thermal Energy Storage (C-TES) with nano-enhanced Phase Change Material (PCM) integrated with the water heating system under Storage, Charging and Discharging (SCD) conditions were investigated experimentally. The effects of the addition of copper oxide (CuO) and aluminum oxide (Al2O3) nanoparticles in PCM on thermal conductivity, specific heat, and on charging and discharging performance rates were theoretically and experimentally investigated and studied in detail. The experimental apparatus utilized paraffin wax as PCM, which was filled in Finned C-TES to conduct the experiments. The experimental results showed a positive improvement compared with the non-nano additive PCM. The significance and originality of this project lies within the evaluation and identification of preferable metal-oxides with higher potential for improving thermal performance.


2018 ◽  
Vol 70 ◽  
pp. 01010
Author(s):  
Marta Kuta ◽  
Dominika Matuszewska ◽  
Tadeusz Michał Wójcik

Increasing energy consumption in residential and public buildings requires development of new technologies for thermal energy production and storage. One of possibilities for the second listed need is the use of phase change materials (PCMs). This work is focused on solutions in this area and consists of two parts. First one is focused on different designs of thermal energy storage (TES) tanks based on the phase change materials. The second part is the analysis of tests results for TES tank containing shelf and tube heat exchanger and filled with phase change material. Thermal energy storage tank is analyzed in order to use it in domestic heating and hot utility water installations. The aim of this research was to check the applicability of phase change material for mentioned purpose. Results show that using phase change materials for thermal energy storage can increase amount of stored heat. The use of properly selected PCM and heat exchanger enables the process of thermal energy storing and releasing to become more efficient.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4840
Author(s):  
Ewelina Radomska ◽  
Lukasz Mika ◽  
Karol Sztekler ◽  
Lukasz Lis

An application of latent heat thermal energy storage systems with phase change materials seems to be unavoidable in the present world. The latent heat thermal energy storage systems allow for storing excessive heat during low demand and then releasing it during peak demand. However, a phase change material is only one of the components of a latent heat thermal energy storage system. The second part of the latent heat thermal energy storage is a heat exchanger that allows heat transfer between a heat transfer fluid and a phase change material. Thus, the main aim of this review paper is to present and systematize knowledge about the heat exchangers used in the latent heat thermal energy storage systems. Furthermore, the operating parameters influencing the phase change time of phase change materials in the heat exchangers, and the possibilities of accelerating the phase change are discussed. Based on the literature reviewed, it is found that the phase change time of phase change materials in the heat exchangers can be reduced by changing the geometrical parameters of heat exchangers or by using fins, metal foams, heat pipes, and multiple phase change materials. To decrease the phase change material’s phase change time in the tubular heat exchangers it is recommended to increase the number of tubes keeping the phase change material’s mass constant. In the case of tanks filled with spherical phase change material’s capsules, the capsules’ diameter should be reduced to shorten the phase change time. However, it is found that some changes in the constructions of heat exchangers reduce the melting time of the phase change materials, but they increase the solidification time.


Sign in / Sign up

Export Citation Format

Share Document