scholarly journals Analysis of Building Energy Consumption in a Hospital in the Hot Summer and Cold Winter Area

2019 ◽  
Vol 158 ◽  
pp. 3735-3740 ◽  
Author(s):  
Chenyao Shen ◽  
Kang Zhao ◽  
Jian Ge ◽  
Qingli Zhou
2011 ◽  
Vol 243-249 ◽  
pp. 6942-6946
Author(s):  
Na Li ◽  
Yan Qian Zhao ◽  
Qi Liu

Taking residential building in hot summer and cold winter zone as research subject, studies the influence factors and sensitivity of building consumption. Choosing three factors of building orientation, building envelope and window-wall ratio for analysis, compares the calculation results by using DeST-h software with energy consumption simulating calculation. The results show that the effect of building envelope heat transfer coefficient on building energy consumption is the greatest. So that is the most sensitive factor, which is followed by building orientation, the effect of window-wall ratio is relatively small.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012059
Author(s):  
Sijie Zhu ◽  
Yanxia Li ◽  
Chao Wang ◽  
Xingkai Zhang ◽  
Xing Shi

Abstract Studies have confirmed that urban green infrastructure (UGI) profoundly impacts urban building energy consumption by regulating urban microclimate, providing shading to buildings, and other mechanisms. This impact is largely dependent on the morphology of UGI. Although this conclusion is widely accepted there lacks a systematic approach to quantify the impact and thus the knowledge regarding its magnitude. This paper discusses the influencing mechanisms of UGI on urban building energy consumption. The city of Nanjing, a Chinese city in the hot-summer-cold-winter climate, is morphologically analyzed to extract prototypes of UGI forms. These prototypes are simulated for their microclimate and urban building energy consumptions using a co-simulation technique, which links ENVI-met to EnergyPlus. The simulation results are statistically analyzed to quantify the impact of UGI morphology on urban building energy consumption. The energy consumption of different morphological groups in summer and winter is compared to determine the impact of UGI morphological features on urban building energy.


2021 ◽  
Vol 13 (2) ◽  
pp. 762
Author(s):  
Liu Tian ◽  
Yongcai Li ◽  
Jun Lu ◽  
Jue Wang

High population density, dense high-rise buildings, and impervious pavements increase the vulnerability of cities, which aggravate the urban climate environment characterized by the urban heat island (UHI) effect. Cities in China provide unique information on the UHI phenomenon because they have experienced rapid urbanization and dramatic economic development, which have had a great influence on the climate in recent decades. This paper provides a review of recent research on the methods and impacts of UHI on building energy consumption, and the practical techniques that can be used to mitigate the adverse effects of UHI in China. The impact of UHI on building energy consumption depends largely on the local microclimate, the urban area features where the building is located, and the type and characteristics of the building. In the urban areas dominated by air conditioning, UHI could result in an approximately 10–16% increase in cooling energy consumption. Besides, the potential negative effects of UHI can be prevented from China in many ways, such as urban greening, cool material, water bodies, urban ventilation, etc. These strategies could have a substantial impact on the overall urban thermal environment if they can be used in the project design stage of urban planning and implemented on a large scale. Therefore, this study is useful to deepen the understanding of the physical mechanisms of UHI and provide practical approaches to fight the UHI for the urban planners, public health officials, and city decision-makers in China.


Sign in / Sign up

Export Citation Format

Share Document