scholarly journals Selection of Lithium-ion Battery Technologies for Electric Vehicles under China’s New Energy Vehicle Credit Regulation

2019 ◽  
Vol 158 ◽  
pp. 3038-3044 ◽  
Author(s):  
Kangda Chen ◽  
Fuquan Zhao ◽  
Han Hao ◽  
Zongwei Liu
Author(s):  
Ari Wardayanti ◽  
Roni Zakaria ◽  
Wahyudi Sutopo ◽  
Bendjamin Benny Louhenapessy ◽  
◽  
...  

Although the demand for the lithium-ion battery for electronic consumers and electric vehicles in Indonesia is high, there is no supplier coming from the local manufacturer. The proper selection of suppliers is required by some lithium-ion battery manufacturers (cells, modules, and packs), and Research and Development (R&D) center of the lithium-ion battery with the consideration not only in benefits and cost but also in opportunities and risks. It is important that experts assist the manufacturers and R&D to procure the lithium-ion (materials and cells), through transparent methods that seek a quantitative model to select the right supplier. The main objective of this study is to propose an analytical approach to select suppliers which incorporate Benefits, Opportunities, Costs and Risks (BOCR) concept that comply with the characteristics of the lithium-ion battery industries. A fuzzy Analytical Hierarchy Process (AHP) model is developed by accommodating the vagueness and inaccuracies of expert elections. The result of this research is development of the model obtained from 2 questionnaires given to the expert. Questionnaire 1 was made for the determination of criteria and sub-criteria, while Questionnaire 2 aims to perform pairwise comparisons of existing criteria and sub-criteria. In the selection of the lithium-ion battery suppliers, there are 11 criteria and 40 sub-criteria which are considered. Those criteria are divided into 4 merits and known for their respective global priorities.


2020 ◽  
Vol 53 (2) ◽  
pp. 12682-12687
Author(s):  
Fu Jiang ◽  
Cheng Jin ◽  
Hongtao Liao ◽  
Heng Li ◽  
Yue Wu ◽  
...  

Machines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 71
Author(s):  
Seyed Saeed Madani ◽  
Erik Schaltz ◽  
Søren Knudsen Kær

Lithium-ion batteries are being implemented in different large-scale applications, including aerospace and electric vehicles. For these utilizations, it is essential to improve battery cells with a great life cycle because a battery substitute is costly. For their implementation in real applications, lithium-ion battery cells undergo extension during the course of discharging and charging. To avoid disconnection among battery pack ingredients and deformity during cycling, compacting force is exerted to battery packs in electric vehicles. This research used a mechanical design feature that can address these issues. This investigation exhibits a comprehensive description of the experimental setup that can be used for battery testing under pressure to consider lithium-ion batteries’ safety, which could be employed in electrified transportation. Besides, this investigation strives to demonstrate how exterior force affects a lithium-ion battery cell’s performance and behavior corresponding to static exterior force by monitoring the applied pressure at the dissimilar state of charge. Electrochemical impedance spectroscopy was used as the primary technique for this research. It was concluded that the profiles of the achieved spectrums from the experiments seem entirely dissimilar in comparison with the cases without external pressure. By employing electrochemical impedance spectroscopy, it was noticed that the pure ohmic resistance, which is related to ion transport resistance of the separator, could substantially result in the corresponding resistance increase.


Batteries ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 17
Author(s):  
Seyed Saeed Madani ◽  
Erik Schaltz ◽  
Søren Knudsen Kær

Thermal analysis and thermal management of lithium-ion batteries for utilization in electric vehicles is vital. In order to investigate the thermal behavior of a lithium-ion battery, a liquid cooling design is demonstrated in this research. The influence of cooling direction and conduit distribution on the thermal performance of the lithium-ion battery is analyzed. The outcomes exhibit that the appropriate flow rate for heat dissipation is dependent on different configurations for cold plate. The acceptable heat dissipation condition could be acquired by adding more cooling conduits. Moreover, it was distinguished that satisfactory cooling direction could efficiently enhance the homogeneity of temperature distribution of the lithium-ion battery.


Sign in / Sign up

Export Citation Format

Share Document