Effect of Exhaust Gas Recirculation on Emissions of a Diesel Engine Fuelled with Castor Seed Biodiesel

2015 ◽  
Vol 813-814 ◽  
pp. 819-823 ◽  
Author(s):  
Pavan Bharadwaja Bhaskar ◽  
S. Srihari

In this study the effect on exhaust gases of a diesel engine fuelled by biodiesel and coupling Exhaust Gas Recirculation (EGR) has been done. EGR is a pre-treatment technique to trim down NOx from diesel engines as it is expected to reduce the flame temperature and the oxygen concentration in the combustion chamber. Fossil fuels so-called biodiesel is picked as the blending fuel. Existence of oxygen in Biodiesel aids complete combustion and anticipated to reduce CO and HC emissions. Exhaust Gas Recirculation technique can capably reduce the amount of NOx. EGR may tend to increase the CO and HC emissions, biodiesel which has higher oxygen content is blended to diesel so that it may compensate CO and HC emissions. The performance and emission characteristics of EGR along with biodiesel in a diesel engine are discussed.

2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Saravanan Duraiarasan ◽  
Rasoul Salehi ◽  
Anna Stefanopoulou ◽  
Siddharth Mahesh ◽  
Marc Allain

Abstract Stringent NOX emission norm for heavy duty vehicles motivates the use of predictive models to reduce emissions of diesel engines by coordinating engine parameters and aftertreatment. In this paper, a physics-based control-oriented NOX model is presented to estimate the feedgas NOX for a diesel engine. This cycle-averaged NOX model is able to capture the impact of all major diesel engine control variables including the fuel injection timing, injection pressure, and injection rate, as well as the effect of cylinder charge dilution and intake pressure on the emissions. The impact of the cylinder charge dilution controlled by the engine exhaust gas recirculation (EGR) in the highly diluted diesel engine of this work is modeled using an adiabatic flame temperature predictor. The model structure is developed such that it can be embedded in an engine control unit without any need for an in-cylinder pressure sensor. In addition, details of this physics-based NOX model are presented along with a step-by-step model parameter identification procedure and experimental validation at both steady-state and transient conditions. Over a complete federal test procedure (FTP) cycle, on a cumulative basis the model prediction was more than 93% accurate.


Sign in / Sign up

Export Citation Format

Share Document