scholarly journals Investigation on recognition method of acoustic emission signal of the compressor valve based on the deep learning method

2021 ◽  
Vol 7 ◽  
pp. 62-71
Author(s):  
Yangyang Zhang ◽  
Guanglu Yang ◽  
Dehai Zhang ◽  
Tao Wang
2020 ◽  
pp. 2150030
Author(s):  
Jian-Da Wu ◽  
Yu-Han Wong ◽  
Wen-Jun Luo ◽  
Kai-Chao Yao

With the development of artificial intelligence in recent years, deep learning has been widely used in mechanical system signal classification but the impact of different feature extractions on the efficiency and effectiveness of deep learning neural networks is more important. In this study, a vehicle classification based on engine acoustic emission signal in the time domain, the frequency domain and the wavelet transform domain for deep learning network techniques is presented and compared. In signal classification, different feature extractions will show in different decomposition levels and can be used to recognize the various acoustic conditions. In the experimental work, as engines from 10 different ground vehicles operate, the measured sound signal is converted into a digital signal, and the established data set is classified and identified by the deep learning method. The number of samples, identification rate and identification time in the various signal domains are compared and discussed in this study. Finally, the experimental results and data analysis show that by using the wavelet signal and the deep learning method, excellent identification time and identification rate can be achieved, compared with traditional time and frequency domain signals.


2020 ◽  
pp. 61-64
Author(s):  
Yu.G. Kabaldin ◽  
A.A. Khlybov ◽  
M.S. Anosov ◽  
D.A. Shatagin

The study of metals in impact bending and indentation is considered. A bench is developed for assessing the character of failure on the example of 45 steel at low temperatures using the classification of acoustic emission signal pulses and a trained artificial neural network. The results of fractographic studies of samples on impact bending correlate well with the results of pulse recognition in the acoustic emission signal. Keywords acoustic emission, classification, artificial neural network, low temperature, character of failure, hardness. [email protected]


Sign in / Sign up

Export Citation Format

Share Document