Quantifying the impact of irrigation on groundwater reserve and crop production – A case study in the North China Plain

2015 ◽  
Vol 70 ◽  
pp. 48-56 ◽  
Author(s):  
Hongyong Sun ◽  
Xiying Zhang ◽  
Enli Wang ◽  
Suying Chen ◽  
Liwei Shao
PLoS ONE ◽  
2016 ◽  
Vol 11 (9) ◽  
pp. e0162655 ◽  
Author(s):  
Xiuwei Liu ◽  
Hongyong Sun ◽  
Til Feike ◽  
Xiying Zhang ◽  
Liwei Shao ◽  
...  

2016 ◽  
Author(s):  
X. Long ◽  
X. X. Tie ◽  
J. J. Cao ◽  
R. J. Huang ◽  
T. Feng ◽  
...  

Abstract. Crop field burning (CFB) has important effects on air pollution in China, but it is seldom quantified and reported in a regional scale, which is of great importance for the control strategies of CFB in China, especially in the North China Plain (NCP). With the provincial statistical data and open crop fires captured by satellite (MODIS), we extracted a detailed emission inventory of CFB during a heavy haze event from 6th to 12th October 2014. A regional dynamical and chemical model (WRF-Chem) was applied to investigate the impact of CFB on air pollution in NCP. The model simulations were compared with the in situ measurements of PM2.5 (particular matter with radius less than 2.5 μm) concentrations. The model evaluation shows that the correlation coefficients (R) between measured and calculated values exceeds 0.80 and absolute normalized mean bias (NMB) is no more than 14 %. In addition, the simulated meteorological parameters such as winds and planetary boundary layer height (PBLH) are also in good agreement with observations. The model was intensive used to study (1) the impacts of CFB and (2) the effect of mountains on regional air quality. The results show that the CFB occurred in southern NCP (SNCP) had significant effect on PM2.5 concentrations locally, causing a maximum of 35 % PM2.5 increase in SNCP. Because of south wind condition, the CFB pollution plume is subjective a long transport to northern NCP (NNCP-with several mega cities, including Beijing of the capital city in China), where there are no significant CFB occurrences, causing a maximum of 32 % PM2.5 increase in NNCP. As a result, the heavy haze in Beijing is enhanced by the CFB occurred in SNCP. Further more, there are two major mountains located in the western and northern NCP. Under the south wind condition, these mountains play important roles in enhancing the PM2.5 pollution in NNCP through the blocking and guiding effects. This study suggests that the PM2.5 emissions in SNCP region should be significantly limited in order to reduce the occurrences of heavy haze events in NNCP region, including the Beijing City.


2007 ◽  
Vol 30 (3) ◽  
pp. 129-147 ◽  
Author(s):  
Y. P. Wei ◽  
R. E. White ◽  
D. Chen ◽  
B. A. Davidson ◽  
J. B. Zhang

2018 ◽  
Vol 201 ◽  
pp. 235-246 ◽  
Author(s):  
Jianan Zou ◽  
Zirui Liu ◽  
Bo Hu ◽  
Xiaojuan Huang ◽  
Tianxue Wen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document