Farmers' Perception of Sustainability for Crop Production on the North China Plain

2007 ◽  
Vol 30 (3) ◽  
pp. 129-147 ◽  
Author(s):  
Y. P. Wei ◽  
R. E. White ◽  
D. Chen ◽  
B. A. Davidson ◽  
J. B. Zhang
2017 ◽  
Vol 205 ◽  
pp. 135-146 ◽  
Author(s):  
Yuechen Tan ◽  
Cong Xu ◽  
Dongxue Liu ◽  
Wenliang Wu ◽  
Rattan Lal ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1167
Author(s):  
Qiuyue Liu ◽  
Zhengrong Kan ◽  
Cong He ◽  
Hailin Zhang

No-till (NT) practice has been widely adopted to improve soil quality, but soil compaction and soil organic carbon (SOC) stratification under long-term NT limit crop production. Strategic tillage (ST), based on single tillage, is proposed as an attractive management practice to sustain the benefits of continuous NT and mitigate its adverse effects. Four tillage systems, including continuous rotary tillage (RT), NT, rotary tillage + subsoiling (RS), and no-till + subsoiling (NS), were implemented to investigate the effects of strategic tillage (i.e., RS and NS) on soil physical properties (compaction and aggregates), SOC, and crop yield in the North China Plain (NCP). The results showed that ST as expected decreased soil bulk density, penetration resistance, and SOC stratification compared with RT and NT at 0–20 cm soil depth (p < 0.05). At 0–10 cm soil depth, more macroaggregates (>0.25 mm) were observed in NT and NS, contributing to higher mean weight and geometric mean diameters, this compared with RT and RS. Additionally, macroaggregate associated SOC was higher, thus resulting in higher SOC storage in NT (31.4–33.4 Mg ha −1) and NS (33.3–35.4 Mg ha−1) at 0–30 cm depth (p < 0.05). Low soil compaction and high SOC in NS were beneficial for the grain yield of wheat and maize, significantly higher by 8.7–32.5% and 14.0–29.8% compared with the other treatments, respectively (p < 0.05). Based on our findings, NS seems to be a promising alternative tillage system to improve soil physicochemical properties and crop production in the NCP. More studies are therefore needed to better understand the benefit of NS.


2014 ◽  
Vol 15 (8) ◽  
pp. 1689-1701 ◽  
Author(s):  
Yuan Liu ◽  
Buchun Liu ◽  
Xiaojuan Yang ◽  
Wei Bai ◽  
Jian Wang

2013 ◽  
Vol 33 (15) ◽  
pp. 3124-3140 ◽  
Author(s):  
Chao Chen ◽  
Arthur M. Greene ◽  
Andrew W. Robertson ◽  
Walter E. Baethgen ◽  
Derek Eamus

Author(s):  
S. Wang ◽  
X. Mo

Abstract. In this study, gross primary production (GPP) estimated from a temperature and greenness (TG) model, a greenness and radiation (GR) model, a vegetation photosynthesis model (VPM), and a MODIS product have been compared with eddy covariance measurements in cropland during 2003–2005. Results showed that the determination coefficients (R2) between fluxnet GPP and estimated GPP were all greater than 0.74, indicating that all these models offered reliable estimates of GPP. We also found that the VPM-based GPP estimates performed a bit better (R2 is 0.82, and RMSE is 16.75 gC m−2 (8 day)−1) than other models, mainly due to its comprehensive consideration of the stresses from light, temperature and water. The actual GPP was overestimated in the non-growing season and underestimated in the growing season by MOD_GPP. The validation confirms that the above three models may be used to estimate crop production in the North China Plain, but there are still significant uncertainties.


2006 ◽  
Vol 20 (13) ◽  
pp. 2787-2802 ◽  
Author(s):  
Yonghui Yang ◽  
Masataka Watanabe ◽  
Xiying Zhang ◽  
Xiaohua Hao ◽  
Jiqun Zhang

2022 ◽  
Author(s):  
Wen-Xuan Liu ◽  
Wen-Sheng Liu ◽  
Mu-Yu Yang ◽  
Yu-Xin Wei ◽  
Zhe Chen ◽  
...  

Abstract The ever-increasing trend of greenhouse gas (GHGs) emissions is accelerating global warming and threatening food security. Environmental benefits and sustainable food production must be pursued locally and globally. Thus, a field experiment was conducted in 2015 to understand how to balance the trade-offs between agronomic productivity and environment quality in the North China Plain (NCP). Eight treatments consisted of two factors, i.e., (i) tillage practices: rotary tillage (RT) and no-till (NT), and (ii) cropping sequences (CS): maize-wheat-soybean-wheat (MWSW), soybean-wheat-maize-wheat (SWMW), soybean-wheat (SW), and maize-wheat (MW). The economic and environmental benefits were evaluated by multiple indicators including the carbon footprint (CF), maize equivalent economic yield (MEEY), energy yield (EY), carbon sustainability index (CSI), etc. Compared with NT, RT increased the EY and MEEY, but emitted 9.4% higher GHGs. Among different CSs, no significant reduction was observed in CF. The lowest (2.0 Mg CO2-eq ha-1 yr-1) and the highest (5.6 Mg CO2-eq ha-1 yr-1) CF values were observed under MW and SWMW, respectively. However, CSs with soybean enhanced MEEY and the net revenue due to its higher price compared to that of MW. Although the highest CSI was observed under RT-MW, soybean-based crop rotation could offset the decline in CSI under NT when compared to that for RT. These findings suggest that conservation agriculture (CA) could enhance the balance in trade-offs between economic and environmental benefits. Additional research is needed on how to achieve high crop production by establishing a highly efficient conservation agriculture system in the NCP.


Sign in / Sign up

Export Citation Format

Share Document