Lower bounds and algorithms for the minimum cardinality bin covering problem

2017 ◽  
Vol 256 (2) ◽  
pp. 392-403
Author(s):  
Rico Walter ◽  
Alexander Lawrinenko
10.37236/953 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Adriana Hansberg ◽  
Dirk Meierling ◽  
Lutz Volkmann

A set $D\subseteq V$ of vertices is said to be a (connected) distance $k$-dominating set of $G$ if the distance between each vertex $u\in V-D$ and $D$ is at most $k$ (and $D$ induces a connected graph in $G$). The minimum cardinality of a (connected) distance $k$-dominating set in $G$ is the (connected) distance $k$-domination number of $G$, denoted by $\gamma_k(G)$ ($\gamma_k^c(G)$, respectively). The set $D$ is defined to be a total $k$-dominating set of $G$ if every vertex in $V$ is within distance $k$ from some vertex of $D$ other than itself. The minimum cardinality among all total $k$-dominating sets of $G$ is called the total $k$-domination number of $G$ and is denoted by $\gamma_k^t(G)$. For $x\in X\subseteq V$, if $N^k[x]-N^k[X-x]\neq\emptyset$, the vertex $x$ is said to be $k$-irredundant in $X$. A set $X$ containing only $k$-irredundant vertices is called $k$-irredundant. The $k$-irredundance number of $G$, denoted by $ir_k(G)$, is the minimum cardinality taken over all maximal $k$-irredundant sets of vertices of $G$. In this paper we establish lower bounds for the distance $k$-irredundance number of graphs and trees. More precisely, we prove that ${5k+1\over 2}ir_k(G)\geq \gamma_k^c(G)+2k$ for each connected graph $G$ and $(2k+1)ir_k(T)\geq\gamma_k^c(T)+2k\geq |V|+2k-kn_1(T)$ for each tree $T=(V,E)$ with $n_1(T)$ leaves. A class of examples shows that the latter bound is sharp. The second inequality generalizes a result of Meierling and Volkmann and Cyman, Lemańska and Raczek regarding $\gamma_k$ and the first generalizes a result of Favaron and Kratsch regarding $ir_1$. Furthermore, we shall show that $\gamma_k^c(G)\leq{3k+1\over2}\gamma_k^t(G)-2k$ for each connected graph $G$, thereby generalizing a result of Favaron and Kratsch regarding $k=1$.


2016 ◽  
Vol 08 (02) ◽  
pp. 1650022
Author(s):  
Zhenhua Liu ◽  
Zhao Zhang

For a strongly connected digraph [Formula: see text], an arc-cut [Formula: see text] is a [Formula: see text]-restricted arc-cut of [Formula: see text] if [Formula: see text] has at least two strong components of order at least [Formula: see text]. The [Formula: see text]-restricted arc-connectivity [Formula: see text] is the minimum cardinality of all [Formula: see text]-restricted arc-cuts. The [Formula: see text]-restricted vertex-connectivity [Formula: see text] can be defined similarly. In this paper, we provide upper and lower bounds for [Formula: see text] and [Formula: see text] for the total digraph [Formula: see text] of [Formula: see text].


2005 ◽  
Vol 39 (3) ◽  
pp. 163-183 ◽  
Author(s):  
Luke Finlay ◽  
Prabhu Manyem

10.37236/7942 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Maria Axenovich ◽  
Anika Kaufmann ◽  
Raphael Yuster

Let $G$ and $H$ be graphs. We say that $P$ is an $H$-packing of $G$ if $P$ is a set of edge-disjoint copies of $H$ in $G$. An $H$-packing $P$ is maximal if there is no other $H$-packing of $G$ that properly contains P. Packings of maximum cardinality have been studied intensively, with several recent breakthrough results. Here, we consider minimum cardinality maximal packings. An $H$-packing $P$ is called clumsy if it is maximal of minimum size. Let $\mathrm{cl}(G,H)$ be the size of a clumsy $H$-packing of $G$. We provide nontrivial bounds for $\mathrm{cl}(G,H)$, and in many cases asymptotically determine $\mathrm{cl}(G,H)$ for some generic classes of graphs G such as $K_n$ (the complete graph), $Q_n$ (the cube graph), as well as square, triangular, and hexagonal grids. We asymptotically determine $\mathrm{cl}(K_n,H)$ for every fixed non-empty graph $H$. In particular, we prove that  $$\mathrm{cl}(K_n, H) = \frac{\binom{n}{2}- \mathrm{ex}(n,H)}{|E(H)|}+o(\mathrm{ex}(n,H)),$$where $ex(n,H)$ is the extremal number of $H$. A related natural parameter is $\mathrm{cov}(G,H)$, that is the smallest number of copies of $H$ in $G$ (not necessarily edge-disjoint) whose removal from $G$ results in an $H$-free graph. While clearly $\mathrm{cov}(G,H) \leqslant\mathrm{cl}(G,H)$, all of our lower bounds for $\mathrm{cl}(G,H)$ apply to $\mathrm{cov}(G,H)$ as well.


1996 ◽  
Vol 07 (05) ◽  
pp. 607-616 ◽  
Author(s):  
A. LE GALL ◽  
V. ZISSIMOPOULOS

We give a generalization of a neural network model originally developed to solve the minimum cardinality vertex covering problem, in order to solve the weighted version of the problem. The model is governed by a modified activation rule and we show that it has some important properties, namely convergence and irredundant covers at stable states. We present experimental results that confirm the effectiveness of the model.


2018 ◽  
Vol 10 (01) ◽  
pp. 1850012
Author(s):  
Purnima Gupta ◽  
Deepti Jain

A set [Formula: see text] is a [Formula: see text]-point set dominating set (2-psd set) of a graph [Formula: see text] if for any subset [Formula: see text], there exists a nonempty subset [Formula: see text] containing at most two vertices such that the subgraph [Formula: see text] induced by [Formula: see text] is connected. The [Formula: see text]-point set domination number of [Formula: see text], denoted by [Formula: see text], is the minimum cardinality of a 2-psd set of [Formula: see text]. In this paper, we determine the lower bounds and an upper bound on [Formula: see text] of a graph. We also characterize extremal graphs for the lower bounds and identify some well-known classes of both separable and nonseparable graphs attaining the upper bound.


2017 ◽  
Vol 09 (04) ◽  
pp. 1750045 ◽  
Author(s):  
Balakrishna Krishnakumari ◽  
Mustapha Chellali ◽  
Yanamandram B. Venkatakrishnan

A vertex [Formula: see text] of a graph [Formula: see text] is said to [Formula: see text]-dominate every edge incident to [Formula: see text], as well as every edge adjacent to these incident edges. A set [Formula: see text] is a vertex-edge dominating set (double vertex-edge dominating set, respectively) if every edge of [Formula: see text] is [Formula: see text]-dominated by at least one vertex (at least two vertices) of [Formula: see text] The minimum cardinality of a vertex-edge dominating set (double vertex-edge dominating set, respectively) of [Formula: see text] is the vertex-edge domination number [Formula: see text] (the double vertex-edge domination number [Formula: see text], respectively). In this paper, we initiate the study of double vertex-edge domination. We first show that determining the number [Formula: see text] for bipartite graphs is NP-complete. We also prove that for every nontrivial connected graphs [Formula: see text] [Formula: see text] and we characterize the trees [Formula: see text] with [Formula: see text] or [Formula: see text] Finally, we provide two lower bounds on the double ve-domination number of trees and unicycle graphs in terms of the order [Formula: see text] the number of leaves and support vertices, and we characterize the trees attaining the lower bound.


2018 ◽  
Vol 22 (4) ◽  
pp. 487-497
Author(s):  
János Balogh ◽  
Leah Epstein ◽  
Asaf Levin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document