scholarly journals Minimum costs paths in intermodal transportation networks with stochastic travel times and overbookings

Author(s):  
Bernard G. Zweers ◽  
Rob D. van der Mei
2014 ◽  
Vol 587-589 ◽  
pp. 1854-1857
Author(s):  
Yi Yong Pan

This paper addresses adaptive reliable shortest path problem which aims to find adaptive en-route guidance to maximize the reliability of arriving on time in stochastic networks. Such routing policy helps travelers better plan their trips to prepare for the risk of running late in the face of stochastic travel times. In order to reflect the stochastic characteristic of travel times, a traffic network is modeled as a discrete stochastic network. Adaptive reliable shortest path problem is uniformly defined in a stochastic network. Bellman’s Principle that is the core of dynamic programming is showed to be valid if the adaptive reliable shortest path is defined by optimal-reliable routing policy. A successive approximations algorithm is developed to solve adaptive reliable shortest path problem. Numerical results show that the proposed algorithm is valid using typical transportation networks.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Shichao Sun ◽  
Zhengyu Duan ◽  
Dongyuan Yang

This paper addressed the vehicle routing problem (VRP) in large-scale urban transportation networks with stochastic time-dependent (STD) travel times. The subproblem which is how to find the optimal path connecting any pair of customer nodes in a STD network was solved through a robust approach without requiring the probability distributions of link travel times. Based on that, the proposed STD-VRP model can be converted into solving a normal time-dependent VRP (TD-VRP), and algorithms for such TD-VRPs can also be introduced to obtain the solution. Numerical experiments were conducted to address STD-VRPTW of practical sizes on a real world urban network, demonstrated here on the road network of Shenzhen, China. The stochastic time-dependent link travel times of the network were calibrated by historical floating car data. A route construction algorithm was applied to solve the STD problem in 4 delivery scenarios efficiently. The computational results showed that the proposed STD-VRPTW model can improve the level of customer service by satisfying the time-window constraint under any circumstances. The improvement can be very significant especially for large-scale network delivery tasks with no more increase in cost and environmental impacts.


Sign in / Sign up

Export Citation Format

Share Document