scholarly journals Second-order fluid dynamics models for travel times in dynamic transportation networks

Author(s):  
S. Kachani ◽  
G. Perakis
Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1159
Author(s):  
Shyam Sundar Santra ◽  
Omar Bazighifan ◽  
Mihai Postolache

In continuous applications in electrodynamics, neural networks, quantum mechanics, electromagnetism, and the field of time symmetric, fluid dynamics, neutral differential equations appear when modeling many problems and phenomena. Therefore, it is interesting to study the qualitative behavior of solutions of such equations. In this study, we obtained some new sufficient conditions for oscillations to the solutions of a second-order delay differential equations with sub-linear neutral terms. The results obtained improve and complement the relevant results in the literature. Finally, we show an example to validate the main results, and an open problem is included.


A theory is presented for deriving the speed of sound and wind velocity as a function of height in the upper atmosphere from observations on the travel times of sound waves from accurately located grenades, released during rocket flight, to microphones at surveyed positions on the ground. The theory is taken to a second order of approximation, which can be utilized in practice if lower atmosphere (balloon) measurements are available. By means of the gas law and the vertical equation of motion of the atmosphere, formulae are obtained for deriving temperature, pressure and density from the speed-of-sound profile, and these also may be evaluated to a higher accuracy if lower atmosphere measurements are available. An outline is given of the computational procedure followed in the processing of data on the basis of this theory by means of the Pegasus computer. Methods of calculating the correction to travel times due to the finite wave amplitude are discussed and compared, and the effect of neglecting this correction in a particular set of experimental data is examined. Other errors which may affect the determination of pressure are also discussed. Consistency between the theory and experimental data obtained in 13 Skylark rocket flights at Woomera is checked in two ways: by examining least squares residuals associated with the sound arrivals at various microphones; and by treating the vertical component of air motion as unknown and examining its distribution about zero. The reduction in the least squares residuals which occurs when account is taken of second order terms is evaluated on the basis of these sets of experimental data.


2011 ◽  
Vol 39 (5) ◽  
pp. 1423-1437 ◽  
Author(s):  
Timothy J. Gundert ◽  
Shawn C. Shadden ◽  
Andrew R. Williams ◽  
Bon-Kwon Koo ◽  
Jeffrey A. Feinstein ◽  
...  

2011 ◽  
Vol 13 ◽  
pp. 07005 ◽  
Author(s):  
B. Betz ◽  
G.S. Denicol ◽  
T. Koide ◽  
E. Molnár ◽  
H. Niemi ◽  
...  

Author(s):  
Gonçalo Mendonça ◽  
Frederico Afonso ◽  
Fernando Lau

The need of the aerospace industry, at national or European level, of faster yet reliable computational fluid dynamics models is the main drive for the application of model reduction techniques. This need is linked to the time cost of high-fidelity models, rendering them inefficient for applications like multi-disciplinary optimization. With the goal of testing and applying model reduction to computational fluid dynamics models applicable to lifting surfaces, a bibliographical research covering reduction of nonlinear, dynamic, or steady models was conducted. This established the prevalence of projection and least mean squares methods, which rely on solutions of the original high-fidelity model and their proper orthogonal decomposition to work. Other complementary techniques such as adaptive sampling, greedy sampling, and hybrid models are also presented and discussed. These projection and least mean squares methods are then tested on simple and documented benchmarks to estimate the error and speed-up of the reduced order models thus generated. Dynamic, steady, nonlinear, and multiparametric problems were reduced, with the simplest version of these methods showing the most promise. These methods were later applied to single parameter problems, namely the lid-driven cavity with incompressible Navier–Stokes equations and varying Reynolds number, and the elliptic airfoil at varying angles of attack for compressible Euler flow. An analysis of the performance of these methods is given at the end of this article, highlighting the computational speed-up obtained with these techniques, and the challenges presented by multiparametric problems and problems showing point singularities in their domain.


PLoS ONE ◽  
2012 ◽  
Vol 7 (6) ◽  
pp. e37842 ◽  
Author(s):  
Robert H. Ong ◽  
Andrew J. C. King ◽  
Benjamin J. Mullins ◽  
Timothy F. Cooper ◽  
M. Julian Caley

2018 ◽  
Vol 45 (20) ◽  
Author(s):  
Yunxiang Chen ◽  
Xiaofeng Liu ◽  
Jason D. Gulley ◽  
Kenneth D. Mankoff

Author(s):  
Chang H. Oh ◽  
Eung S. Kim

Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy (DOE), is performing research and development that focuses on key phenomena important during potential scenarios that may occur in very high temperature reactors (VHTRs). Phenomena identification and ranking studies to date have ranked an air ingress event, following on the heels of a VHTR depressurization, as important with regard to core safety. Consequently, the development of advanced air-ingress-related models and verification and validation data are a very high priority. Following a loss of coolant and system depressurization incident, air will enter the core of the High Temperature Gas Cooled Reactor through the break, possibly causing oxidation of the core and reflector graphite structure. Simple core and plant models indicate that, under certain circumstances, the oxidation may proceed at an elevated rate with additional heat generated from the oxidation reaction itself. Under postulated conditions of fluid flow and temperature, excessive degradation of lower plenum graphite can lead to a loss of structural support. Excessive oxidation of core graphite can also lead to a release of fission products into the confinement, which could be detrimental to reactor safety. Computational fluid dynamics models developed in this study will improve our understanding of this phenomenon. This paper presents two-dimensional (2-D) and three-dimensional (3-D) computational fluid dynamic (CFD) results for the quantitative assessment of the air ingress phenomena. A portion of the results from density-driven stratified flow in the inlet pipe will be compared with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document