Rosiglitazone, an agonist of peroxisome proliferator-activated receptor gamma, protects against gastric ischemia–reperfusion damage in rats: role of oxygen free radicals generation

2004 ◽  
Vol 505 (1-3) ◽  
pp. 195-203 ◽  
Author(s):  
Isabel Villegas ◽  
Antonio Ramón Martín ◽  
Walber Toma ◽  
Catalina Alarcón de la Lastra
2016 ◽  
Vol 311 (4) ◽  
pp. R676-R688 ◽  
Author(s):  
Ahmad Hanif ◽  
Matthew L. Edin ◽  
Darryl C. Zeldin ◽  
Christophe Morisseau ◽  
Mohammed A. Nayeem

The relationship between soluble epoxide hydrolase (sEH) and coronary reactive hyperemia (CRH) response to a brief ischemic insult is not known. Epoxyeicosatrienoic acids (EETs) exert cardioprotective effects in ischemia/reperfusion injury. sEH converts EETs into dihydroxyeicosatrienoic-acids (DHETs). Therefore, we hypothesized that knocking out sEH enhances CRH through modulation of oxylipin profiles, including an increase in EET/DHET ratio. Compared with sEH+/+, sEH−/− mice showed enhanced CRH, including greater repayment volume (RV; 28% higher, P < 0.001) and repayment/debt ratio (32% higher, P < 0.001). Oxylipins from the heart perfusates were analyzed by LC-MS/MS. The 14,15-EET/14,15-DHET ratio was 3.7-fold higher at baseline ( P < 0.001) and 5.6-fold higher post-ischemia ( P < 0.001) in sEH−/− compared with sEH+/+ mice. Likewise, the baseline 9,10- and 12,13-EpOME/DiHOME ratios were 3.2-fold ( P < 0.01) and 3.7-fold ( P < 0.001) higher, respectively in sEH−/− compared with sEH+/+ mice. 13-HODE was also significantly increased at baseline by 71% ( P < 0.01) in sEH−/− vs. sEH+/+ mice. Levels of 5-, 11-, 12-, and 15-hydroxyeicosatetraenoic acids were not significantly different between the two strains ( P > 0.05), but were decreased postischemia in both groups ( P = 0.02, P = 0.04, P = 0.05, P = 0.03, respectively). Modulation of CRH by peroxisome proliferator-activated receptor gamma (PPARγ) was demonstrated using a PPARγ-antagonist (T0070907), which reduced repayment volume by 25% in sEH+/+ ( P < 0.001) and 33% in sEH−/− mice ( P < 0.01), and a PPARγ-agonist (rosiglitazone), which increased repayment volume by 37% in both sEH+/+ ( P = 0.04) and sEH−/− mice ( P = 0.04). l-NAME attenuated CRH in both sEH−/− and sEH+/+. These data demonstrate that genetic deletion of sEH resulted in an altered oxylipin profile, which may have led to an enhanced CRH response.


PPAR Research ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Huang-Jun Liu ◽  
Hai-Han Liao ◽  
Zheng Yang ◽  
Qi-Zhu Tang

Peroxisome proliferator-activated receptor-γ(PPARγ) is a ligand-activated transcription factor belonging to the nuclear receptor superfamily, which plays a central role in regulating lipid and glucose metabolism. However, accumulating evidence demonstrates that PPARγagonists have potential to reduce inflammation, influence the balance of immune cells, suppress oxidative stress, and improve endothelial function, which are all involved in the cellular and molecular mechanisms of cardiac fibrosis. Thus, in this review we discuss the role of PPARγin various cardiovascular conditions associated with cardiac fibrosis, including diabetes mellitus, hypertension, myocardial infarction, heart failure, ischemia/reperfusion injury, atrial fibrillation, and several other cardiovascular disease (CVD) conditions, and summarize the developmental status of PPARγagonists for the clinical management of CVD.


1997 ◽  
Vol 19 (1-2) ◽  
pp. 181-190 ◽  
Author(s):  
Severina M. Jacinto ◽  
Madhu S. Chintala ◽  
Mustafa F. Lokhandwala ◽  
Bhagavan S. Jandhyala

2017 ◽  
Vol 23 (1) ◽  
pp. 46-56 ◽  
Author(s):  
Chong-Bin Zhong ◽  
Xi Chen ◽  
Xu-Yue Zhou ◽  
Xian-Bao Wang

Myocardial infarction (MI) is a serious cardiovascular disease resulting in high rates of morbidity and mortality. Although advances have been made in restoring myocardial perfusion in ischemic areas, decreases in cardiomyocyte death and infarct size are still limited, attributing to myocardial ischemia/reperfusion (I/R) injury. It is necessary to develop therapies to restrict myocardial I/R injury and protect cardiomyocytes against further damage after MI. Many studies have suggested that peroxisome proliferator-activated receptor γ (PPARγ), a ligand-inducible nuclear receptor that predominantly regulates glucose and lipid metabolism, is a promising therapeutic target for ameliorating myocardial I/R injury. Thus, this review focuses on the role of PPARγ in cardioprotection during myocardial I/R. The cardioprotective effects of PPARγ, including attenuating oxidative stress, inhibiting inflammatory responses, improving glucose and lipid metabolism, and antagonizing apoptosis, are described. Additionally, the underlying mechanisms of cardioprotective effects of PPARγ, such as regulating the expression of target genes, influencing other transcription factors, and modulating kinase signaling pathways, are further discussed.


Sign in / Sign up

Export Citation Format

Share Document