Piceatannol stimulates osteoblast differentiation that may be mediated by increased bone morphogenetic protein-2 production

2006 ◽  
Vol 551 (1-3) ◽  
pp. 1-9 ◽  
Author(s):  
Jiunn-Kae Chang ◽  
Ya-Ling Hsu ◽  
I-Chun Teng ◽  
Po-Lin Kuo
2006 ◽  
Vol 282 (7) ◽  
pp. 4983-4993 ◽  
Author(s):  
Nandini Ghosh-Choudhury ◽  
Chandi Charan Mandal ◽  
Goutam Ghosh Choudhury

Lovastatin promotes osteoblast differentiation by increasing bone morphogenetic protein-2 (BMP-2) expression. We demonstrate that lovastatin stimulates tyrosine phosphorylation of the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3K), leading to an increase in its kinase activity in osteoblast cells. Inhibition of PI3K ameliorated expression of the osteogenic markers alkaline phosphatase, type I collagen, osteopontin, and BMP-2. Expression of dominant-negative PI3K and PTEN, an inhibitor of PI3K signaling, significantly attenuated lovastatin-induced transcription of BMP-2. Akt kinase was also activated in a PI3K-dependent manner. However, our data suggest involvement of an additional signaling pathway. Lovastatin-induced Erk1/2 activity contributed to BMP-2 transcription. Inhibition of PI3K abrogated Erk1/2 activity in response to lovastatin, indicating the presence of a signal relay between them. We provide, as a mechanism of this cross-talk, the first evidence that lovastatin stimulates rapid activation of Ras, which associates with and activates PI3K in the plasma membrane, which in turn regulates Akt and Erk1/2 to induce BMP-2 expression for osteoblast differentiation.


FEBS Open Bio ◽  
2015 ◽  
Vol 5 (1) ◽  
pp. 341-347 ◽  
Author(s):  
Seiji Shibasaki ◽  
Sachie Kitano ◽  
Miki Karasaki ◽  
Sachi Tsunemi ◽  
Hajime Sano ◽  
...  

2018 ◽  
Vol 104 ◽  
pp. 36-41 ◽  
Author(s):  
Muthurangan Manikandan ◽  
Sarah Abuelreich ◽  
Mona Elsafadi ◽  
Hussain Alsalman ◽  
Hassan Almalak ◽  
...  

Endocrinology ◽  
2001 ◽  
Vol 142 (9) ◽  
pp. 4026-4039 ◽  
Author(s):  
Chaitali Banerjee ◽  
Amjad Javed ◽  
Je-Yong Choi ◽  
Jack Green ◽  
Vicki Rosen ◽  
...  

Abstract Cbfa1/Runx2 is a transcription factor essential for bone formation and osteoblast differentiation. Two major N-terminal isoforms of Cbfa1, designated type I/p56 (PEBP2aA1, starting with the sequence MRIPV) and type II/p57 (til-1, starting with the sequence MASNS), each regulated by distinct promoters, are known. Here, we show that the type I transcript is constitutively expressed in nonosseous mesenchymal tissues and in osteoblast progenitor cells. Cbfa1 type I isoform expression does not change with the differentiation status of the cells. In contrast, the type II transcript is increased during differentiation of primary osteoblasts and is induced in osteoprogenitors and in premyoblast C2C12 cells in response to bone morphogenetic protein-2. The functional equivalence of the two isoforms in activation and repression of bone-specific genes indicates overlapping functional roles. The presence of the ubiquitous type I isoform in nonosseous cells and before bone morphogenetic protein-2 induced expression of the type II isoform suggests a regulatory role for Cbfa1 type I in early stages of mesenchymal cell development, whereas type II is necessary for osteogenesis and maintenance of the osteoblast phenotype. Our data indicate that Cbfa1 function is regulated by transcription, cellular protein levels, and DNA binding activity during osteoblast differentiation. Taken together, our studies suggest that developmental timing and cell type- specific expression of type I and type II Cbfa isoforms, and not necessarily molecular properties or sequences that reside in the N-terminus of Cbfa1, are the principal determinants of the osteogenic activity of Cbfa1.


Sign in / Sign up

Export Citation Format

Share Document