scholarly journals GABA released from cultured cortical neurons influences the modulation of t-[35S]butylbicyclophosphorothionate binding at the GABAA receptor

2008 ◽  
Vol 600 (1-3) ◽  
pp. 26-31 ◽  
Author(s):  
Daniel A. García ◽  
Iolanda Vendrell ◽  
Mireia Galofré ◽  
Cristina Suñol
1990 ◽  
Vol 40 (6) ◽  
pp. 1337-1344 ◽  
Author(s):  
Lawrence G. Miller ◽  
Jack Heller ◽  
Monica Lumpkin ◽  
Cheryl L. Weill ◽  
David J. Greenblatt ◽  
...  

Toxins ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 262
Author(s):  
Qin-Wei Wu ◽  
Josef P. Kapfhammer

The CRISPR-Cas13 system based on a bacterial enzyme has been explored as a powerful new method for RNA manipulation. Due to the high efficiency and specificity of RNA editing/interference achieved by this system, it is currently being developed as a new therapeutic tool for the treatment of neurological and other diseases. However, the safety of this new generation of RNA therapies is still unclear. In this study, we constructed a vector expressing CRISPR-Cas13 under a constitutive neuron-specific promoter. CRISPR-Cas13 from Leptotrichia wadei was expressed in primary cultures of mouse cortical neurons. We found that the presence of CRISPR-Cas13 impedes the development of cultured neurons. These results show a neurotoxic action of Cas13 and call for more studies to test for and possibly mitigate the toxic effects of Cas13 enzymes in order to improve CRISPR-Cas13-based tools for RNA targeting.


Stroke ◽  
2013 ◽  
Vol 44 (suppl_1) ◽  
Author(s):  
Anton Pekcec ◽  
Kazim Yigitkanli ◽  
Joo Eun Jung ◽  
Hulya Karatas ◽  
Eng H Lo ◽  
...  

Background and Purpose— Recovery from stroke is limited in part by an inhibitory environment in the post-ischemic brain, but factors preventing successful remodeling are not well known. We sought to investigate if signaling from the axon guidance molecule semaphorin 3A (Sema3A) via eicosanoid second messengers can contribute to this inhibitory environment, and if blocking the Sema3A pathway can provide a benefit following experimental stroke. Methods— Cultured cortical neurons from mice were treated with recombinant Sema3A, or with the eicosanoids 12-HETE and 12-HPETE. Neurons from ALOX15 knockout mice, and a human brain endothelial cell line, were treated similarly. The filament model of MCAO was used to induce experimental stroke in mice, in some of which Sema3A was injected stereotactically into the striatum. The 12/15-LOX inhibitor LOXBlock-1 was injected intraperitoneally one week after MCAO. Results— Expression levels of 12/15-lipoxygenase (12/15-LOX) were increased within two hours after exposure of primary neurons to 90nM recombinant Sema3A. Either Sema3A, or the 12/15-lipoxygenase (12/15-LOX) metabolites 12-HETE and 12-HPETE at 300nM, blocked axon extension in neurons compared to solvent controls, and decreased tube formation in endothelial cells. The Sema3A effect was reversed by inhibiting 12/15-LOX, and neurons derived from 12/15-LOX knockout mice were insensitive to Sema3A. Following middle cerebral artery occlusion to induce stroke in mice, immunohistochemistry showed both Sema3A and 12/15-LOX are increased in the cortex up to two weeks. To determine if a Sema3A-dependent damage pathway is activated following ischemia, we injected recombinant Sema3A into the striatum. Sema3A alone did not cause injury in normal brains. But when injected into post-ischemic brains, Sema3A increased cortical damage by 79%, and again this effect was reversed by 12/15-LOX inhibition. Administration of the 12/15-LOX inhibitor LOXBlock-1 7 days after transient MCAO increased vascularization in the infarcted and peri-infarct area one week later. Conclusions— Our findings suggest that blocking the semaphorin pathway may provide a novel therapeutic strategy to improve stroke recovery.


2003 ◽  
Vol 89 (1) ◽  
pp. 128-134 ◽  
Author(s):  
Epolia Ramadan ◽  
Zhanyan Fu ◽  
Gabriele Losi ◽  
Gregg E. Homanics ◽  
Joseph H. Neale ◽  
...  

Deletion of the β3 subunit of the GABAA receptor produces severe behavioral deficits and epilepsy. GABAA receptor-mediated miniature inhibitory postsynaptic currents (mIPSCs) in cortical neurons in cultures from β3 −/− mice were significantly faster than those in β3 +/+ mice and were more prolonged by zolpidem. Surface staining revealed that the number of β2/3, α2, and α3 (but not of α1) subunit-expressing neurons and the intensity of subunit clusters were significantly reduced in β3 −/− mice. Transfection of β3 −/− neurons with β3 cDNA restored β2/3, α2, and α3 subunits immunostaining and slowed mIPSCs decay. We show that the deletion of the β3 subunit causes the loss of a subset of GABAA receptors with α2 and α3 subunits while leaving a receptor population containing predominantly α1 subunit with fast spontaneous IPSC decay and increased zolpidem sensitivity.


Sign in / Sign up

Export Citation Format

Share Document