HNF-4α regulated miR-122 contributes to development of gluconeogenesis and lipid metabolism disorders in Type 2 diabetic mice and in palmitate-treated HepG2 cells

2016 ◽  
Vol 791 ◽  
pp. 254-263 ◽  
Author(s):  
Shengnan Wei ◽  
Ming Zhang ◽  
Yang Yu ◽  
Huan Xue ◽  
Xiaoxin Lan ◽  
...  
2011 ◽  
Vol 34 (10) ◽  
pp. 1613-1618 ◽  
Author(s):  
Kazuko Kojima ◽  
Tsutomu Shimada ◽  
Yasuhiro Nagareda ◽  
Michiru Watanabe ◽  
Junko Ishizaki ◽  
...  

2016 ◽  
Vol 779 ◽  
pp. 46-52 ◽  
Author(s):  
Xin-ru Zhang ◽  
Xiu-juan Fu ◽  
Da-sheng Zhu ◽  
Chao-zai Zhang ◽  
Shi Hou ◽  
...  

2021 ◽  
Author(s):  
Zhanchi Xu ◽  
Zeyuan Lin ◽  
Jingran Zeng ◽  
Rui Chen ◽  
Chuting Li ◽  
...  

Abstract Background: Abnormalities in lipid and glucose metabolism are are constantly occured in type 2 diabetes (T2DM). However, it can be ameliorated by gentiopicroside (GPS). Considering the key role of fibroblast growth factor receptor 1/phosphatidylinositol 3-kinase/protein kinase B (FGFR1/PI3K/AKT) pathway in T2DM, we explore the possible mechanism of GPS on lipid and glucose metabolism through its effects on FGFR1/PI3K/AKT pathway.Methods: Palmitic acid (PA)-induced HepG2 cells and a db/db mice were used to clarify the role and mechanism of polydatin on lipid and glucose metabolism.Results: GPS ameliorated glucose and lipid metabolism disorders in db/db mice and PA-induced HepG2 cells. Furthermore, GPS activated FGFR1/PI3K/AKT pathway including increased the protein expression of FGFR1 and promoted the phosphorylation of PI3K, AKT and FoxO1. Additionally, knockdown of FGFR1 reversed the activation of PI3K/AKT pathway by GPS.Conclusions: The present study demontrates that GPS ameliorates glucose and lipid metabolism disorders via activation of FGFR1/PI3K/AKT pathway.


2022 ◽  
Vol 28 (1) ◽  
Author(s):  
Jielin Zhou ◽  
Yao Lu ◽  
Yajing Jia ◽  
Jing Lu ◽  
Zhengxuan Jiang ◽  
...  

Abstract Background Previous reports implied a possible link between PES1 and lipid metabolism. However, the role of PES1 in regulating T2DM related lipid metabolism and the effect of ketogenic diet (KD) on PES1 have not been reported. The aim of present study is to explore the role of PES1 in effects of KD on diabetic mice and its mediated mechanism. Methods Male C57BL/6J and KKAy mice were fed with standard diet (SD) and KD, respectively. Simultaneously, McArdle 7777 cells were treated by β-hydroxybutyric acid (β-HB), Pes1 siRNA or Pes1 overexpression plasmid, respectively. Additionally, liver-conditional knockout (CKO) of Pes1 in vivo was applied. Results Hepatic PES1 expression in diabetic mice was markedly increased, which was suppressed by KD feeding with an accompanying reduction of hepatic and plasma triglycerides (TG). In mice with CKO of Pes1, the protein levels of p300, SREBP1c, FASN, SCD1, Caspase1, NLRP3 and GSDMD were dramatically downregulated in livers, and the plasma and hepatic TG, IL-1β and IL-18 were decreased as well. The similar outcomes were also observed in β-HB and Pes1 knockdown treated hepatocytes. By contrast, Pes1 overexpression in cultured hepatocytes showed that these levels were significantly enhanced, which were, however reduced under β-HB treatment. Mechanistically, we discovered that β-HB decreased CHOP binding to the Pes1 promoters, resulting in the downregulation of PES1, thereby reducing PES1 binding to p300 and Caspase1 promoters. The inhibition of p300 and Caspase1 expression elicited the dramatic suppression of acetylation of SREBP1c via its interaction with p300, and the decreased GSDMD levels. Besides, knockdown of Caspase1 also alleviated the TG levels in cultured hepatocytes. Conclusion KD may improve lipid dysregulation in type 2 diabetic mice by downregulating hepatic PES1 expression.


Sign in / Sign up

Export Citation Format

Share Document