Effect of cardamonin on hepatic ischemia reperfusion induced in rats: Role of nitric oxide

2017 ◽  
Vol 815 ◽  
pp. 446-453 ◽  
Author(s):  
Yara Atef ◽  
Hassan M. El-Fayoumi ◽  
Yousra Abdel-Mottaleb ◽  
Mona F. Mahmoud
2001 ◽  
Vol 120 (5) ◽  
pp. A549
Author(s):  
Shigeyuki Kawachi ◽  
Motohide Shimazu ◽  
Masaki Kitajima ◽  
Matthew B. Grisham

Shock ◽  
2000 ◽  
Vol 13 (3) ◽  
pp. 217-223 ◽  
Author(s):  
Peitan Liu ◽  
Baohuan Xu ◽  
Eric Spokas ◽  
Pi-Shiang Lai ◽  
Patrick Y-K Wong

MicroRNA ◽  
2020 ◽  
Vol 09 ◽  
Author(s):  
Chrysanthos D. Christou ◽  
Georgios Tsoulfas

Introduction: Ischemia-reperfusion (I/R) injuries are caused by complex interrelated mechanisms and pathways. Regarding the liver, I/R injuries and their clinical manifestations are crucial for the surgical outcome. Despite its importance, there is no broadly accepted therapy either for the prevention or for the management of I/R injury. I/R injury of the liver can occur either during hepatic surgery (warm) or during the transplantation procedure (cold). MicroRNAs play a pivotal role in the mechanism of I/R injury, as they regulate the expression of the cellular participants and humoral factors associated with I/R injury. Objective: In this review, we highlight the microRNAs that are involved in the I/R injury of the liver, and the molecular pathways that they regulate. In addition, we discuss the potential role of circulating microRNAs as biomarkers and their role as pharmacological targets in the prevention, diagnosis and treatment of I/R injuries. Method: We conducted a comprehensive review of the PubMed bibliographic database regarding microRNAs and I/R injuries of the liver. Results: In diagnostics, microRNA panels could replace invasive diagnostic procedures, relieving patients of the associated complications. In therapeutics, microRNA agomirs, antagomirs and other drugs can be used to shift the balance between proapoptotic and survival pathways, to alleviate the liver damage caused by I/R. In transplantation procedures, microRNA profiling could decrease the incidence of early graft dysfunction, especially regarding marginal grafts. Conclusion: Although microRNAs seem a very promising clinical tool in the management of I/R injuries, further research is required, until microRNAs become a novel tool in the diagnosis and monitoring of an I/R injury of the liver.


2021 ◽  
pp. 096032712199944
Author(s):  
Mohamed IA Hassan ◽  
Fares EM Ali ◽  
Abdel-Gawad S Shalkami

Aim: Hepatic ischemia/reperfusion (I/R) injury is a syndrome involved in allograft dysfunction. This work aimed to elucidate carvedilol (CAR) role in hepatic I/R injury. Methods: Male rats were allocated to Sham group, CAR group, I/R group and CAR plus I/R group. Rats subjected to hepatic ischemia for 30 minutes then reperfused for 60 minutes. Oxidative stress markers, inflammatory cytokines and nitric oxide synthases were measured in hepatic tissues. Results: Hepatocyte injury following I/R was confirmed by a marked increase in liver enzymes. Also, hepatic I/R increased the contents of malondialdehyde however decreased glutathione contents and activities of antioxidant enzymes. Furthermore, hepatic I/R caused elevation of toll-like receptor-4 (TLR-4) expression and inflammatory mediators levels such as tumor necrosis factor-α, interleukin-6 and cyclooxygenase-II. Hepatic I/R caused down-regulation of endothelial nitric oxide synthase and upregulation of inducible nitric oxide synthase expressions. CAR treatment before hepatic I/R resulted in the restoration of liver enzymes. Administration of CAR caused a significant correction of oxidative stress and inflammation markers as well as modulates the expression of endothelial and inducible nitric oxide synthase. Conclusions: CAR protects liver from I/R injury through reduction of the oxidative stress and inflammation, and modulates endothelial and inducible nitric oxide synthase expressions.


Sign in / Sign up

Export Citation Format

Share Document