scholarly journals Fully integrated numerical simulation of surface water-groundwater interactions using SWAT-MODFLOW with an improved calibration tool

2021 ◽  
Vol 35 ◽  
pp. 100822
Author(s):  
Tina Jafari ◽  
Anthony S. Kiem ◽  
Saman Javadi ◽  
Takashi Nakamura ◽  
Kei Nishida
2006 ◽  
Vol 321-323 ◽  
pp. 451-454
Author(s):  
Joo Young Yoo ◽  
Sung Jin Song ◽  
Chang Hwan Kim ◽  
Hee Jun Jung ◽  
Young Hwan Choi ◽  
...  

In the present study, the synthetic signals from the combo tube are simulated by using commercial electromagnetic numerical analysis software which has been developed based on a volume integral method. A comparison of the simulated signals to the experiments is made for the verification of accuracy, and then evaluation of five deliberated single circumferential indication signals is performed to explore a possibility of using a numerical simulation as a practical calibration tool. The good agreement between the evaluation results for two cases (calibration done by experiments and calibration made by simulation) demonstrates such a high possibility.


2014 ◽  
Vol 11 (2) ◽  
pp. 2011-2044
Author(s):  
R. Barthel

Abstract. Today there is a great consensus that water resources research needs to become more holistic, integrating perspectives of a large variety of disciplines. Groundwater and surface water (hereafter: GW and SW) are typically identified as different compartments of the hydrological cycle and were traditionally often studied and managed separately. However, despite this separation, these respective fields of study are usually not considered to be different disciplines. They are often seen as different specialisations of hydrology with different focus, yet similar theory, concepts, methodology. The present article discusses how this notion may form a substantial obstacle in the further integration of GW and SW research and management. The article focusses on the regional scale (areas of approx. 103 to 106 km2), which is identified as the scale where integration is most greatly needed, but ironically the least amount of fully integrated research seems to be undertaken. The state of research on integrating GW and SW research is briefly reviewed and the most essential differences between GW hydrology (or hydrogeology, geohydrology) and SW hydrology are presented. Groundwater recharge and baseflow are used as examples to illustrate different perspectives on similar phenomena that can cause severe misunderstandings and errors in the conceptualisation of integration schemes. It is also discussed that integration of GW and SW research on the regional scale necessarily must move beyond the hydrological aspects, by collaborating with social sciences and increasing the interaction between science and the society in general. The typical elements of an ideal interdisciplinary workflow are presented and their relevance with respect to integration of GW and SW is discussed. The overall conclusions are that GW hydrology and SW hydrogeology study rather different objects of interest, using different types of observation, working on different problem settings. They have thus developed different theory, methodology and terminology. Yet, there seems to be a widespread lack of awareness of these differences which hinders the detection of the existing interdisciplinary aspects of GW and SW integration and consequently the development of truly unifying, interdisciplinary theory and methodology. Thus, despite having the ultimate goal of creating a more holistic approach, we should start integration by analysing potential disciplinary differences. Improved understanding among hydrologists of what interdisciplinary means and how it works is needed. Hydrologists, despite frequently being involved in multidisciplinary projects, are not sufficiently involved in developing interdisciplinary strategies and do usually not regard the process of integration as such as a research topic of its own. There seems to be a general reluctance to apply (truly) interdisciplinary methodology because this is tedious and few, immediate incentives are experienced.


Author(s):  
Adrian P Gaylard ◽  
Kerry Kirwan ◽  
Duncan A Lockerby

This review surveys the problem of surface contamination of cars, which poses a growing engineering challenge to vehicle manufacturers, operators and users. Both the vision of drivers and the visibility of vehicles need to be maintained under a wide range of environmental conditions. This requires managing the flow of surface water on windscreens and side glazing. The rate of deposition of solid contaminants on glazing, lights, licence plates and external mirrors also needs to be minimised. Maintaining vehicle aesthetics and limiting the transfer of contaminants to the hands and clothes of users from soiled surfaces are also significant issues. Recently, keeping camera lenses clean has emerged as a key concern, as these systems transition from occasional manoeuvring aids to sensors for safety systems. The deposition of water and solid contaminants on to car surfaces is strongly influenced by unsteady vehicle aerodynamic effects. Airborne water droplets falling as rain or lifted as spray by tyres interact with wakes, vortices and shear flows and accumulate on vehicle surfaces as a consequence. The same aerodynamic effects also control the movement of surface water droplets, rivulets and films; hence, particular attention is paid to the management of surface water over the front side glass and the deposition of contaminants on the rear surfaces. The test methods used in the automotive industry are reviewed, as are the numerical simulation techniques.


2012 ◽  
Vol 27 (11) ◽  
pp. 1634-1645 ◽  
Author(s):  
Girma Yimer Ebrahim ◽  
Kelly Hamonts ◽  
Ann van Griensven ◽  
Andreja Jonoski ◽  
Winnie Dejonghe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document