scholarly journals Surface contamination of cars: A review

Author(s):  
Adrian P Gaylard ◽  
Kerry Kirwan ◽  
Duncan A Lockerby

This review surveys the problem of surface contamination of cars, which poses a growing engineering challenge to vehicle manufacturers, operators and users. Both the vision of drivers and the visibility of vehicles need to be maintained under a wide range of environmental conditions. This requires managing the flow of surface water on windscreens and side glazing. The rate of deposition of solid contaminants on glazing, lights, licence plates and external mirrors also needs to be minimised. Maintaining vehicle aesthetics and limiting the transfer of contaminants to the hands and clothes of users from soiled surfaces are also significant issues. Recently, keeping camera lenses clean has emerged as a key concern, as these systems transition from occasional manoeuvring aids to sensors for safety systems. The deposition of water and solid contaminants on to car surfaces is strongly influenced by unsteady vehicle aerodynamic effects. Airborne water droplets falling as rain or lifted as spray by tyres interact with wakes, vortices and shear flows and accumulate on vehicle surfaces as a consequence. The same aerodynamic effects also control the movement of surface water droplets, rivulets and films; hence, particular attention is paid to the management of surface water over the front side glass and the deposition of contaminants on the rear surfaces. The test methods used in the automotive industry are reviewed, as are the numerical simulation techniques.

Author(s):  
A. R. Ansari ◽  
H. B. Khaleeq ◽  
A. Thakker

This paper presents a comparison of self-rectifying turbines for the Oscillating Water Column (OWC) based Wave Energy power extracting device using numerical simulation. The two most commonly used turbines for OWC based devices, the Impulse and the Wells turbines were evaluated under real sea simulated conditions. Assuming the quasi-steady condition, experimental data for both 0.6m turbines with 0.6 hub to tip ratio was used to predict their behavior under real sea conditions. The real sea water surface elevation time history data was used to simulate the flow conditions using standard numerical simulation techniques. A simple geometry of the OWC was considered for the simulation. The results show that the overall mean performance of an Impulse turbine is better than the Wells turbine under unsteady, irregular real sea conditions. The Impulse turbine was observed to be more stable over a wide range of flow conditions. This paper reports the comparison of performance characteristics of both these turbines under simulated real sea conditions.


Author(s):  
S. A. Sadovnikov

Introduction: Successful monitoring of environmental parameters requires the development of flexible software complexes with evolvable calculation functionality. Purpose: Developing a modular system for numerical simulation of atmospheric laser gas analysis. Results: Based on differential absorption method, a software system has been developed which provides the calculation of molecular absorption cross-sections, molecular absorption coefficients, atmospheric transmission spectra, and lidar signals. Absorption line contours are calculated using the Voigt profile. The prior information sources are HITRAN spectroscopic databases and statistical models of the distribution of temperature, pressure and gas components in the atmosphere. For modeling lidar signals, software blocks of calculating the molecular scattering coefficient and aerosol absorption/scattering coefficients were developed. For testing the applicability of various laser sources in the problems of environmental monitoring of the atmosphere, a concentration reconstruction error calculation block was developed for the atmospheric gas components, ignoring the interfering absorption of laser radiation by foreign gases. To verify the correct functioning of the software, a program block was developed for comparing the results of the modeling of atmospheric absorption and transmission spectra by using the standard SPECTRA information system. The discrepancy between the calculation of the atmospheric transmission spectra obtained using the developed system as compared to the SPECTRA results is less than 1%. Thus, a set of the presented program blocks allows you to carry out complex modeling of remote atmospheric gas analysis. Practical relevance: The software complex allows you to rapidly assess the possibilities of using a wide range of laser radiation sources for the problems of remote gas analysis.


This book provides students and researchers in fluid engineering with an up-to-date overview of turbulent flow research in the areas of simulation and modeling. A key element of the book is the systematic, rational development of turbulence closure models and related aspects of modern turbulent flow theory and prediction. Starting with a review of the spectral dynamics of homogenous and inhomogeneous turbulent flows, succeeding chapters deal with numerical simulation techniques, renormalization group methods and turbulent closure modeling. Each chapter is authored by recognized leaders in their respective fields, and each provides a thorough and cohesive treatment of the subject.


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Tebogo M. Mokgehle ◽  
Nikita T. Tavengwa

AbstractAcid mine drainage is the reaction of surface water with sub-surface water located on sulfur bearing rocks, resulting in sulfuric acid. These highly acidic conditions result in leaching of non-biodegradeable heavy metals from rock which then accumulate in flora, posing a significant environmental hazard. Hence, reliable, cost effective remediation techniques are continuously sought after by researchers. A range of materials were examined as adsorbents in the extraction of heavy metal ions from acid mine drainage (AMD). However, these materials generally have moderate to poor adsorption capacities. To address this problem, researchers have recently turned to nano-sized materials to enhance the surface area of the adsorbent when in contact with the heavy metal solution. Lately, there have been developments in studying the surface chemistry of nano-engineered materials during adsorption, which involved alterations in the physical and chemical make-up of nanomaterials. The resultant surface engineered nanomaterials have been proven to show rapid adsorption rates and remarkable adsorption capacities for removal of a wide range of heavy metal contaminants in AMD compared to the unmodified nanomaterials. A brief overview of zeolites as adsorbents and the developent of nanosorbents to modernly applied magnetic sorbents and ion imprinted polymers will be discussed. This work provides researchers with thorough insight into the adsorption mechanism and performance of nanosorbents, and finds common ground between the past, present and future of these versatile materials.


MRS Bulletin ◽  
2003 ◽  
Vol 28 (6) ◽  
pp. 424-427 ◽  
Author(s):  
Agnès Aymonier ◽  
Eric Papon

AbstractSoft reactive adhesives (SRAs) are polymer-based materials (e.g., polyurethanes, polysiloxanes, polydienes) designed to be further vulcanized or slightly cross-linked through external activation (heat, moisture, oxygen, UV–visible irradiation, etc.), either at the time of their application or within a subsequent predefined period. They are used mainly as mastics, or sealing compounds, in a wide range of industrial and commercial fields such as construction, footwear, and the automotive industry. Generally deposited as thick films, SRAs behave as structural adhesives; their low elastic moduli accommodate large strains between the bonded parts without incurring permanent damage. Other outstanding attributes of SRAs are their resistance to solvents, their ability to withstand aggressive environments, and their ease of use. This article discusses examples of SRAs and, more specifically, shows how the cross-linking chemistry, mainly through step-growth polymerization, provides their primary advantages.


2008 ◽  
Vol 591-593 ◽  
pp. 294-298
Author(s):  
Uilame Umbelino Gomes ◽  
L.A. Oliveira ◽  
S.R.S. Soares ◽  
M. Furukava ◽  
C.P. Souza

Sintered stainless steel has a wide range of applications mainly in the automotive industry. Properties such as wear resistance, density and hardness can be improved by addition of nanosized particles of refractory carbides. The present study compares the behavior of the sintering and hardness of stainless steel samples reinforced with NbC or TaC (particles size less than 20 nm) synthesized at UFRN. The main aim of this work was to identify the effect of the particle size and dispersion of different refractory carbides in the hardness and sintered microstructure. The samples were sintered in a vacuum furnace. The heating rate, sintering temperature and times were 20°C/min, 1290°C and 30, 60 min respectively. We have been able to produce compacts with a relative density among 95.0%. The hardness values obtained were 140 HV for the reinforced sample and 76 HV for the sample without reinforcement.


2001 ◽  
Author(s):  
X. Ai ◽  
B. Q. Li

Abstract Turbulent magnetically flows occur in a wide range of material processing systems involving electrically conducting melts. This paper presents a parallel higher order scheme for the direct numerical simulation of turbulent magnetically driven flows in induction channels. The numerical method is based on the higher order finite difference algorithm, which enjoys the spectral accuracy while minimizing the computational intensity. This, coupled with the parallel computing strategy, provides a very useful means to simulate turbulent flows. The higher order finite difference formulation of magnetically driven flow problems is described in this paper. The details of the parallel algorithm and its implementation for the simulations on parallel machines are discussed. The accuracy and numerical performance of the higher order finite difference scheme are assessed in comparison with the spectral method. The examples of turbulent magnetically driven flows in induction channels and pressure gradient driven flows in regular channels are given, and the computed results are compared with experimental measurements wherever possible.


Sign in / Sign up

Export Citation Format

Share Document