Effect of temporal resolution of water level and temperature inputs on numerical simulation of groundwater-surface water flux exchange in a heavily modified urban river

2012 ◽  
Vol 27 (11) ◽  
pp. 1634-1645 ◽  
Author(s):  
Girma Yimer Ebrahim ◽  
Kelly Hamonts ◽  
Ann van Griensven ◽  
Andreja Jonoski ◽  
Winnie Dejonghe ◽  
...  
Water ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 107
Author(s):  
Elahe Jamalinia ◽  
Faraz S. Tehrani ◽  
Susan C. Steele-Dunne ◽  
Philip J. Vardon

Climatic conditions and vegetation cover influence water flux in a dike, and potentially the dike stability. A comprehensive numerical simulation is computationally too expensive to be used for the near real-time analysis of a dike network. Therefore, this study investigates a random forest (RF) regressor to build a data-driven surrogate for a numerical model to forecast the temporal macro-stability of dikes. To that end, daily inputs and outputs of a ten-year coupled numerical simulation of an idealised dike (2009–2019) are used to create a synthetic data set, comprising features that can be observed from a dike surface, with the calculated factor of safety (FoS) as the target variable. The data set before 2018 is split into training and testing sets to build and train the RF. The predicted FoS is strongly correlated with the numerical FoS for data that belong to the test set (before 2018). However, the trained model shows lower performance for data in the evaluation set (after 2018) if further surface cracking occurs. This proof-of-concept shows that a data-driven surrogate can be used to determine dike stability for conditions similar to the training data, which could be used to identify vulnerable locations in a dike network for further examination.


2019 ◽  
Vol 27 (1) ◽  
pp. 344-353
Author(s):  
Abdul-Hassan K. Al-Shukur ◽  
Ranya Badea’ Mahmoud

One of the most common type of embankment dam failure is the dam-break due to overtopping. In this study, the finite elements method has been used to analyze seepage and limit equilibrium method to study stability of the body of an earthfill dam during the flood condition. For this purpose, the software Geostudio 2012 is used through its subprograms SEEP/W and SLOPE/W. Al-Adhaim dam in Iraq has been chosen to analysis the 5 days of flood. It was found that the water flux of seepage during the flood reaches about 8.772*10-5. m3/sec when the water level 146.5 m at 2nd day. Seepage through the embankment at maximum water level increased by 55.1 % from maximum water level. It was concluded that the factor of safety against sliding in downstream side decrease with increasing water level and vice versa. It was also concluded that the deposits are getting more critical stability during the conditions of flood when the factor of safety value reaches 1.219 at 2nd day.


2018 ◽  
Vol 168 ◽  
pp. 02001
Author(s):  
Karel Adámek ◽  
Jan Kolář ◽  
Pavel Peukert

There are many types of devices used for various purposes, called as vortex valves. The aim of this paper is the design of vortex valves, determined for controlled higher outflows from retention tanks. The paper follows the previous study of smaller sizes of vortex valves. The method of flow numerical simulation allows us to identify the reason of the two-branch operational (resistance) characteristic of the solved valves and the suitable sizes of the main valve dimensions for the given flow rate and water level.


2019 ◽  
Vol 660 ◽  
pp. 1317-1326 ◽  
Author(s):  
Joachim Rozemeijer ◽  
Janneke Klein ◽  
Dimmie Hendriks ◽  
Wiebe Borren ◽  
Maarten Ouboter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document