32. BRCA GENE MUTATIONS IN YOUNG TRIPLE NEGATIVE BREAST CANCER PATIENTS IN WALES

2020 ◽  
Vol 46 (6) ◽  
pp. e10
Author(s):  
Jennifer Long ◽  
Marianne Dillon ◽  
Alexandra Murray
Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2711
Author(s):  
Angela R. Solano ◽  
Pablo G. Mele ◽  
Fernanda S. Jalil ◽  
Natalia C. Liria ◽  
Ernesto J. Podesta ◽  
...  

Gene/s sequencing in hereditary breast/ovary cancer (HBOC) in routine diagnosis is challenged by the analysis of panels. We aim to report a retrospective analysis of BRCA1/2 and non-BRCA gene sequencing in patients with breast/ovary cancer (BOC), including triple-negative breast cancer (TNBC), in our population. In total 2155 BOC patients (1900 analyzed in BRCA1/2 and 255 by multigenic panels) gave 372 (17.2.6%) and 107 (24.1%) likely pathogenic/pathogenic variants (LPVs/PVs), including BRCA and non-BRCA genes, for the total and TNBC patients, respectively. When BOC was present in the same proband, a 51.3% rate was found for LPVs/PVs in BRCA1/2. Most of the LPVs/PVs in the panels were in BRCA1/2; non-BRCA gene LPVs/PVs were in CDH1, CHEK2, CDKN2A, MUTYH, NBN, RAD51D, and TP53. TNBC is associated with BRCA1/2 at a higher rate than the rest of the breast cancer types. The more prevalent PVs in BRCA1/2 genes (mostly in BRCA1) do not rule out the importance to panels of genes, although they are certainly far from shedding light on the gap of the 85% predicted linkage association of BOC with BRCA1/2 and are still not elucidated.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6501 ◽  
Author(s):  
Suvimol Niyomnaitham ◽  
Napa Parinyanitikul ◽  
Ekkapong Roothumnong ◽  
Worapoj Jinda ◽  
Norasate Samarnthai ◽  
...  

Background Triple negative breast cancer (TNBC) is a breast cancer subtype characterized by absence of both hormonal receptors and human epithelial growth factor receptor 2 (HER2). TNBC accounts for 15–20% of breast cancer. TNBC is associated with more aggressive disease and worse clinical outcome. Though the underlying mechanism of TNBC is currently unclear, the heterogeneity of clinical characteristics in various population may relate to the difference in tumor mutational profile. There were studies on TNBC gene mutations in various ethnic groups but the tumor genome data on Thai TNBC patients is currently unknown. This study aims to investigate mutational profile of Thai TNBC. Methods The patients were Thai individuals who were diagnosed with primary breast carcinoma between 2014 and 2017. All surgically removed primary tumor tissues were carefully examined by pathologists and archived as formalin-fixed paraffin-embedded tumor. TNBC was defined by absence of hormonal receptors and HER2 by immunohistochemistry. Genomic DNA was extracted, enriched and sequenced of all exomes on the Illumina HiSeq. Genomic data were then processed through bioinformatics platform to identify genomic alterations and tumor mutational burden. Results A total of 116 TNBC patients were recruited. Genomic analysis of TNBC samples identified 81,460 variants, of which 5,906 variants were in cancer-associated genes. The result showed that Thai TNBC has higher tumor mutation burden than previously reported data. The most frequently mutated cancer-associated gene was TP53 similar to other TNBC cohorts. Meanwhile KMT2C was found to be more commonly mutated in Thai TNBC than previous studies. Mutational profile of Thai TNBC patients also revealed difference in many frequently mutated genes when compared to other Western TNBC cohorts. Conclusion This result supported that TNBC breast cancer patients from various ethnic background showed diverse genome alteration pattern. Although TP53 is the most commonly mutated gene across all cohorts, Thai TNBC showed different gene mutation frequencies, especially in KMT2C. In particular, the cancer gene mutations are more prevalent in Thai TNBC patients. This result provides important insight on diverse underlying genetic and epigenetic mechanisms of TNBC that could translate to a new treatment strategy for patients with this disease.


Author(s):  
N Besic ◽  
B Cernivc ◽  
J De Greve ◽  
K Lokar ◽  
M Krajc ◽  
...  

Breast Care ◽  
2020 ◽  
pp. 1-9
Author(s):  
Rudolf Napieralski ◽  
Gabriele Schricker ◽  
Gert Auer ◽  
Michaela Aubele ◽  
Jonathan Perkins ◽  
...  

<b><i>Background:</i></b> PITX2 DNA methylation has been shown to predict outcomes in high-risk breast cancer patients after anthracycline-based chemotherapy. To determine its prognostic versus predictive value, the impact of PITX2 DNA methylation on outcomes was studied in an untreated cohort vs. an anthracycline-treated triple-negative breast cancer (TNBC) cohort. <b><i>Material and Methods:</i></b> The percent DNA methylation ratio (PMR) of paired-like homeodomain transcription factor 2 (PITX2) was determined by a validated methylation-specific real-time PCR test. Patient samples of routinely collected archived formalin-fixed paraffin-embedded (FFPE) tissue and clinical data from 144 TNBC patients of 2 independent cohorts (i.e., 66 untreated patients and 78 patients treated with anthracycline-based chemotherapy) were analyzed. <b><i>Results:</i></b> The risk of 5- and 10-year overall survival (OS) increased continuously with rising PITX2 DNA methylation in the anthracycline-treated population, but it increased only slightly during 10-year follow-up time in the untreated patient population. PITX2 DNA methylation with a PMR cutoff of 2 did not show significance for poor vs. good outcomes (OS) in the untreated patient cohort (HR = 1.55; <i>p</i> = 0.259). In contrast, the PITX2 PMR cutoff of 2 identified patients with poor (PMR &#x3e;2) vs. good (PMR ≤2) outcomes (OS) with statistical significance in the anthracycline-treated cohort (HR = 3.96; <i>p</i> = 0.011). The results in the subgroup of patients who did receive anthracyclines only (no taxanes) confirmed this finding (HR = 5.71; <i>p</i> = 0.014). <b><i>Conclusion:</i></b> In this hypothesis-generating study PITX2 DNA methylation demonstrated predominantly predictive value in anthracycline treatment in TNBC patients. The risk of poor outcome (OS) correlates with increasing PITX2 DNA methylation.


2021 ◽  
Vol 32 ◽  
pp. S43-S44
Author(s):  
K.S. Harborg ◽  
R. Zachariae ◽  
J. Olsen ◽  
M. Johannsen ◽  
D. Cronin-Fenton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document