Chemical composition and electronic structure of the passive layer formed on stainless steels in a glucose-oxidase solution

2008 ◽  
Vol 54 (1) ◽  
pp. 123-132 ◽  
Author(s):  
C. Marconnet ◽  
Y. Wouters ◽  
F. Miserque ◽  
C. Dagbert ◽  
J.-P. Petit ◽  
...  
1993 ◽  
Vol 329 ◽  
Author(s):  
Vivien D.

AbstractIn this paper the relationships between the crystal structure, chemical composition and electronic structure of laser materials, and their optical properties are discussed. A brief description is given of the different laser activators and of the influence of the matrix on laser characteristics in terms of crystal field strength, symmetry, covalency and phonon frequencies. The last part of the paper lays emphasis on the means to optimize the matrix-activator properties such as control of the oxidation state and site occupancy of the activator and influence of its concentration.


2021 ◽  
Author(s):  
Panagiotis Kl. Barkoutsos ◽  
Fotios Gkritsis ◽  
Pauline J. Ollitrault ◽  
Igor O. Sokolov ◽  
Stefan Woerner ◽  
...  

‘Alchemical’ quantum algorithm for the simultaneous optimisation of chemical composition and electronic structure for material design. By exploiting quantum mechanical principles this approach will boost drug discovery in the near future.


Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 650 ◽  
Author(s):  
Francisco Cordovilla ◽  
Alejandro Tur ◽  
Ángel García-Beltrán ◽  
Marcos Diaz ◽  
Ignacio Angulo ◽  
...  

Laser welding of dissimilar stainless steels is of interest when mechanical, corrosion, or esthetical requirements impose the use of a high-performance stainless steels, while production-cost requirements prevent using expensive materials in all the parts of a given device. The compromise may lead to the use of the most expensive material in critical areas and the cheapest one in the remaining. Their union can be materialized by laser-pulsed welding. It has intrinsic difficulties derived from the different physical and chemical properties of the steels, and from the need of preserving the protective passive layer. The present work achieves a welded joint with minimum thermal impact by means of laser pulses, capable of preserving the corrosion resistance of the involved stainless steels. The influence of the parameters to define static and dynamic pulses on the material and on the welding regime, keyhole, or heat conduction, is studied. It is used to calculate the overlapping factor of the pulses on the basis of the real dimensions of the melted area. A continuous joint has been built with dynamic pulses. The corrosion resistance of it has been checked showing a similar behavior to the non-heated material. The microstructure of the optimized joint is associated with a reduced HAZ while its mechanical behavior is suitable for its real application.


Sign in / Sign up

Export Citation Format

Share Document