In situ immobilization of cobalt phthalocyanine on the mesoporous carbon ceramic SiO2/C prepared by the sol–gel process. Evaluation as an electrochemical sensor for oxalic acid

2011 ◽  
Vol 56 (3) ◽  
pp. 1256-1261 ◽  
Author(s):  
Abdur Rahim ◽  
Sergio B.A. Barros ◽  
Leliz T. Arenas ◽  
Yoshitaka Gushikem
2016 ◽  
Vol 16 (4) ◽  
pp. 396-404 ◽  
Author(s):  
Sindy Escobar ◽  
Andres Illanes ◽  
Lorena Wilson ◽  
Claudia Bernal ◽  
Monica Mesa

1998 ◽  
Vol 519 ◽  
Author(s):  
Y. Yan ◽  
Z. Duan ◽  
D.-G. Chen ◽  
S. Ray Chaudhuri

AbstractThe insoluble, strongly hydrogen bonded organic pigment of 3,6-bis-(4-chlorphenyl)-l,4- diketopyrrolo [3,4-c] pyrrole was transiently blocked by adding carbamate groups, and consequently incorporated into organic-inorganic hybrid matrices by a sol-gel process. The homo- (pigment-pigment) and hetero-intermolecular (pigment-matrix) interactions were found to control both the assembly and dispersion of pigment molecules in the hybrid coating films. A weaker interaction between matrices and pigment molecules results in aggregation of the carbamate pigment in the methyl-silicate films. A stronger interaction forms a homogenous dispersion and coloration of the phenyl-silicate films. The as-prepared methyl- and phenylsilicate films doped with the organic pigment were distinguished by a morphology change and a blue (hypsochromic) shift in absorption from 550 to 460 nm. Thermal treatment can remove the carbamate groups and in-situ form the organic pigment in the hybrid films.


2018 ◽  
Vol 24 (9) ◽  
pp. 1421-1427 ◽  
Author(s):  
Feng Liu ◽  
Shaoai Xie ◽  
Yan Wang ◽  
Jianjun Yu ◽  
Qinghua Meng

PurposeThe titania (titanium dioxide) is one of the important functional additives in the photosensitive resin and encounters the problem of stabilization in the photosensitive resin for 3D printing. This study aims to achieve enhancement in stabilization by preparation of the polymerizable titania andin situlaser-induced crystallization during 3D printing.Design/methodology/approachA type of polymerizable titania (AAEM@TiO2) was designed and prepared from tetrabutyl titanate (TBT) and 2-(acetoacetoxy)ethyl methacrylate (AAEM) via the sol–gel process, which was characterized by Fourier-transform infrared (FTIR) spectra, ultraviolet–visible (UV-Vis) spectra, surface bonding efficiency (SBE) and settling height (H). AAEM acted on both bonding to the titania and polymerization with the monomer in resin for stabilization. The polymerizable titania could be converted to the pigmented titania by means of laser-induced crystallization. The photosensitive resin was then formulated on the basis of optimization and used in a stereolithography apparatus (SLA) for 3D printing.FindingsThe stabilization effect of AAEM on TiO2was achieved and the mechanism of competition in the light-consuming reactions during photocuring was proposed. The ratio of nAAEM/nTBTin AAEM@TiO2, the concentration of AAEM@TiO2and photoinitiator (PI) used in the photosensitive resin were optimized. The anatase crystal form was indicated by X-ray diffraction (XRD) and clustering of nanocrystals was revealed by scanning electron microscopy (SEM) after SLA 3D printing.Originality/valueThis investigation provides a novel method of pigmentation by preparation of the polymerizable titania andin situlaser-induced crystallization for SLA 3D printing.


Carbon ◽  
2008 ◽  
Vol 46 (7) ◽  
pp. 1031-1036 ◽  
Author(s):  
Miki Yoshimune ◽  
Takuji Yamamoto ◽  
Masaru Nakaiwa ◽  
Kenji Haraya

2011 ◽  
Vol 122 (3) ◽  
pp. 1792-1799 ◽  
Author(s):  
Federica Bondioli ◽  
Maria Elena Darecchio ◽  
Adrian S. Luyt ◽  
Massimo Messori

Sign in / Sign up

Export Citation Format

Share Document