photosensitive resin
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 30)

H-INDEX

9
(FIVE YEARS 4)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Cheng Chen ◽  
Bi-Wu Huang ◽  
Zheng-Ting Lu ◽  
Yang Wu

Abstract Precursor 3-ethyl-3-hydroxymethyloxetane was synthesized with trihydroxypropane and diethyl carbonate as the main raw materials. Intermediate 3-ethyl-3-allylmethoxyoxetane was synthesized with 3-ethyl-3-hydroxymethyloxetane and allyl bromide. Prepolymer 1,3-bis[(3-ethyl-3-methoxyoxetane)propyl]tetramethyldisiloxane was synthesized with 3-ethyl-3-allylmethoxyoxetane and 1,1,3,3-tetramethyldisiloxane. Cationic photoinitiator triarylsulfonium hexafluoroantimonate of 3 wt% was added to the prepolymer, and a novel kind of photosensitive resin was prepared. Structures of the compounds obtained at individual stages of the synthesis were analyzed and characterized by FTIR and 1H-NMR. Photo-DSC analysis showed that the prepolymer had excellent photosensitivity. Thermogravimetric analysis (TG) revealed that the ultraviolet (UV)-cured samples owned excellent thermal stabilities of up to 405°C. And the mechanical properties of the UV-cured samples were tested by the universal material testing machine, giving 25.95 MPa of tensile strength, 2,935.15 MPa of elastic modulus, and 4.09% of elongation at break.


2021 ◽  
Vol 11 (23) ◽  
pp. 11139
Author(s):  
Georgios I. Giannopoulos ◽  
Stylianos K. Georgantzinos

The significant developments of additive manufacturing and especially 3D-printing technologies have broadened the application field of metamaterials. The present study aims at establishing the main design parameters of a novel 3D-printed polymer-based joint. The proposed joint can efficiently absorb impact energy, relieving the material components from extensive plastic deformations. The design of the machine element is inspired by the molecular structure of carbon nanotubes and appropriately adjusted in such a way that it has the ability to partially transform translational motion to rotational motion and, thus, provide axial structural protection from compressive shocks. The utilized material is a photosensitive resin that is typically utilized in 3D manufacturing processes. Experiments are utilized to characterize the mechanical performance of the raw material as well as the static compressive behavior of the joint. Finally, finite element simulations are performed to test the developed design under impact loadings characterized by different frequencies. The damping capabilities of the metamaterial-based joint are revealed and discussed.


2021 ◽  
Author(s):  
Samuel Ovalle ◽  
E. Viamontes ◽  
Tony Thomas

Digital Light Processing (DLP) 3D printing allows for the creation of parts with advanced engineering materials and geometries difficult to produce through conventional manufacturing techniques. Photosensitive resin monomers are activated with a UV-producing LCD screen to polymerize, layer by layer, forming the desired part. With the right mixture of photosensitive resin and advanced engineering powder material, useful engineering-grade parts can be produced. The Bison 1000 is a research-grade DLP printer that permits the user to change many parameters, in order to discover an optimal method for producing 3D parts of any material of interest. In this presentation, the process parameter optimization and their influence on the 3D printed parts through DLP technique will be discussed. The presentation is focused on developing 3D printable slurry, printing of complex ceramic lattice structures, as well as post heat treatment of these DLP-produced parts.


2021 ◽  
Vol 11 (17) ◽  
pp. 8168
Author(s):  
Masaya Takahashi ◽  
Soshu Kirihara

Zirconia electrodes with dendritic patterns were fabricated by stereolithographic additive manufacturing (STL-AM). A solid electrolyte of yttria-stabilized zirconia (YSZ) was selected for oxygen separation in the molten salt electrolysis of aluminum smelting without carbon dioxide excretion. Thereafter, 4, 6, 8 and 12-coordinated dendritic structures composed of cylindrical lattices were designed as computer graphics. The specific surface area of each structure was maximized by changing the aspect ratio. The spatial profile and surface pressure of the hot liquid propagation in the dendrite patterns were systematically visualized by computational fluid dynamics (CFD). During the fabrication process, a photosensitive resin containing zirconia particles was spread on a substrate, and an ultraviolet (UV) laser beam was scanned to create a two-dimensional (2D) cross-section. Through layer laminations, three-dimensional (3D) objects with dendritic structures were successfully fabricated. The ceramics were obtained through dewaxing and sintering.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2573
Author(s):  
Yuansheng Liu ◽  
Biwu Huang ◽  
Wenbin Zhou ◽  
Weiqing Chen ◽  
Yang Wu

Precusor EHO(3-ethyl-3-hydroxymethyloxetane) was synthesized with diethyl carbonate and trihydroxypropane as the main raw materials. Intermediate AllyEHO(3-ethyl-3-allylmethoxyoxetane) was synthesized with 3-ethyl-3-hydroxymethyloxetane and allyl bromide as the main raw materials. Prepolymer bis[(3-ethyl-3-methoxyoxetane)propyl]diphenylsilane was synthesized with 3-ethyl-3-methoxyoxetane)propyl and diphenylsilane. Photoinitiator triarylsulfonium hexafluoroantimonate of 3% was added to the prepolymer, and a novel kind of the photosensitive resin was prepared. They were analyzed and characterized with FTIR and 1H-NMR. Photo-DSC examination revealed that the bis[(3-ethyl-3-methoxyoxetane)propyl]diphenylsilane has great photosensitivity. The thermal properties and mechanical properties of the photosensitive resin were examined by TGA and a microcomputer-controlled universal material testing machine, with thermal stabilities of up to 446 °C. The tensile strength was 75.5 MPa and the bending strength was 49.5 MPa. The light transmittance remained above 98%.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xuechun Liu ◽  
Zhenjiang Li ◽  
Yi Rong ◽  
Minsong Cao ◽  
Hongyu Li ◽  
...  

PurposeA 3D printed geometric phantom was developed that can be scanned with computed tomography (CT) and magnetic resonance imaging (MRI) to measure the geometric distortion and determine the relevant dose changes.Materials and MethodsA self-designed 3D printed photosensitive resin phantom was used, which adopts grid-like structures and has 822 1 cm2 squares. The scanning plan was delivered by three MRI scanners: the Elekta Unity MR-Linac 1.5T, GE Signa HDe 1.5T, and GE Discovery-sim 750 3.0T. The geometric distortion comparison was concentrated on two 1.5T MRI systems, whereas the 3.0T MRI was used as a supplemental experiment. The most central transverse images in each dataset were selected to demonstrate the plane distortion. Some mark points were selected to analyze the distortion in the 3D direction based on the plane geometric distortion. A treatment plan was created with the off-line Monaco system.ResultsThe distortion increases gradually from the center to the outside. The distortion range is 0.79 ± 0.40 mm for the Unity, 1.31 ± 0.56 mm for the GE Signa HDe, and 2.82 ± 1.48 mm for the GE Discovery-sim 750. Additionally, the geometric distortion slightly affects the actual planning dose of the radiotherapy.ConclusionGeometric distortion increases gradually from the center to the outside. The distortion values of the Unity were smaller than those of the GE Signa HDe, and the Unity has the smallest geometric distortion. Finally, the Unity’s dose variation best matched with the standard treatment plan.


2021 ◽  
Vol 396 (1) ◽  
pp. 2000287
Author(s):  
Marius‐Andrei Boca ◽  
Alexandru Sover ◽  
Laurențiu Slătineanu

2021 ◽  
Vol 11 (5) ◽  
pp. 2162
Author(s):  
Heebo Ha ◽  
Yeongjae Seo ◽  
Paolo Matteini ◽  
Xue Qi ◽  
Sooman Lim ◽  
...  

Due to the susceptibility of Ag nanowires to external mechanical and chemical damage, maintaining high optical performance and ambient and mechanical stability during the fabrication process is important for the industrial use of Ag nanowire transparent electrodes (TEs). In this study, urethane acrylate-based photosensitive resin (UAPR) is used as the coating material for Ag nanowire TEs to improve their optical transmittance, ambient stability, and resistance to external wiping damage. In the proposed method, UV-curable UAPR is coated onto Ag nanowire TEs using a simple doctor blade, forming a protective coating that increases the optical transmittance of the electrodes due to the refractive index of the UAPR between the air and the substrate. The UAPR coating successfully protects the Ag nanowires from corrosion in ambient air, with no significant change in their optical or electrical properties observed after 180 h of exposure to ambient air. Mechanical wiping tests also confirm that the UAPR coating is effective in protecting the Ag nanowires from external wiping damage, with no degradation of the optical or electrical properties observed after six wiping cycles.


Author(s):  
Yanhua Gao ◽  
Xiaochen Bi ◽  
Yang Liu ◽  
Zizhou Fang ◽  
Shenqiang Liu

Sign in / Sign up

Export Citation Format

Share Document