Asymmetrical Supercapacitor Composed of Thin Co(OH)2 Nanoflakes on Three-Dimensional Ni/Si Microchannel Plates with Superior Electrochemical Performance

2014 ◽  
Vol 149 ◽  
pp. 18-27 ◽  
Author(s):  
Mai Li ◽  
Shaohui Xu ◽  
Christopher Cherry ◽  
Yiping Zhu ◽  
Rong Huang ◽  
...  
RSC Advances ◽  
2015 ◽  
Vol 5 (38) ◽  
pp. 30260-30267 ◽  
Author(s):  
Hanlin Cheng ◽  
Hai M. Duong

CNT gel composite presenting different structures have been developed with excellent electrochemical performance for supercapacitor applications.


RSC Advances ◽  
2015 ◽  
Vol 5 (40) ◽  
pp. 31275-31281 ◽  
Author(s):  
Xin Qian ◽  
Tao Hang ◽  
Guang Ran ◽  
Ming Li

A 3D porous Ni/Sn–O–C composite thin film anode is electrodeposited from organic electrolyte containing LiPF6 and exhibits satisfactory electrochemical performance.


2022 ◽  
Author(s):  
Kainan Li ◽  
Ke Zheng ◽  
Zhifang Zhang ◽  
Kuan Li ◽  
Ziyao Bian ◽  
...  

Abstract Construction of metal selenides with a large specific surface area and a hollow structure is one of the effective methods to improve the electrochemical performance of supercapacitors. However, the nano-material easily agglomerates due to the lack of support, resulting in the loss of electrochemical performance. Herein, we successfully design a three-dimensional graphene (3DG) encapsulation-protected hollow nanoboxes (CoSe2-SnSe2) composite aerogel (3DG/CoSe2-SnSe2) via a co-precipitation method coupled with self-assembly route, followed by a high temperature selenidation strategy. The obtained aerogel possesses porous 3DG conductive network, large specific surface area and plenty of reactive active sites. It could be used as a flexible and binder-free electrode after a facile mechanical compression process, which provided a high specific capacitance of 460 F g-1 at 0.5 A g-1, good rate capability of 212.7 F g-1 at 10 A g-1, and excellent cycle stability due to the fast electron/ion transfer and electrolyte diffusion. With the as-prepared 3DG/CoSe2-SnSe2 as positive electrodes and the AC (activated carbon) as negative electrodes, an asymmetric supercapacitor (3DG/CoSe2-SnSe2//AC) was fabricated, which delivered a high specific capacity of 38 F g-1 at 1A g-1 and an energy density of 11.89 W h kg-1 at 749.9 W kg-1, as well as a capacitance retention of 91.1% after 3000 cycles. This work provides a new method for preparing electrode material.


2021 ◽  
Vol 1036 ◽  
pp. 35-44
Author(s):  
Ling Fang Ruan ◽  
Jia Wei Wang ◽  
Shao Ming Ying

Silicon-based anode materials have been widely discussed by researchers because of its high theoretical capacity, abundant resources and low working voltage platform,which has been considered to be the most promising anode materials for lithium-ion batteries. However,there are some problems existing in the silicon-based anode materials greatly limit its wide application: during the process of charge/discharge, the materials are prone to about 300% volume expansion, which will resultin huge stress-strain and crushing or collapse on the anods; in the process of lithium removal, there is some reaction between active material and current collector, which creat an increase in the thickness of the solid phase electrolytic layer(SEI film); during charging and discharging, with the increase of cycle times, cracks will appear on the surface of silicon-based anode materials, which will cause the batteries life to decline. In order to solve these problems, firstly, we summarize the design of porous structure of nanometer sized silicon-based materials and focus on the construction of three-dimensional structural silicon-based materials, which using natural biomass, nanoporous carbon and metal organic framework as structural template. The three-dimensional structure not only increases the channel of lithium-ion intercalation and the rate of ion intercalation, but also makes the structure more stable than one-dimensional or two-dimensional. Secondly, the Si/C composite, SiOx composite and alloying treatment can improve the volume expansion effection, increase the rate of lithium-ion deblocking and optimize the electrochemical performance of the material. The composite materials are usually coated with elastic conductive materials on the surface to reduce the stress, increase the conductivity and improve the electrochemical performance. Finally, the future research direction of silicon-based anode materials is prospected.


RSC Advances ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 6568-6575 ◽  
Author(s):  
Mengmeng Liu ◽  
Xiaohang Zhu ◽  
Tianye Ma ◽  
Congcong Zhang ◽  
Xiang Chen ◽  
...  

GA–TiO2 composites as a cathode material realize an excellent electrochemical performance in Li–S batteries.


2018 ◽  
Vol 6 (14) ◽  
pp. 5603-5607 ◽  
Author(s):  
Hong Yuan ◽  
Jia Liu ◽  
Hansheng Li ◽  
Yongjian Li ◽  
Xiufeng Liu ◽  
...  

Graphitic carbon nitride quantum dot decorated three-dimensional graphene as an efficient electrocatalyst exhibited synergistically enhanced electrochemical performance for triiodide reduction.


RSC Advances ◽  
2016 ◽  
Vol 6 (17) ◽  
pp. 13957-13963 ◽  
Author(s):  
Yongfeng Li ◽  
Hui Wang ◽  
Jianming Jian ◽  
Yun Fan ◽  
Lin Yu ◽  
...  

Electrodes with rationally designed hybrid nanostructure composites can have superior electrochemical performance for supercapacitors to single structured materials.


RSC Advances ◽  
2015 ◽  
Vol 5 (26) ◽  
pp. 19838-19843 ◽  
Author(s):  
Zhao Wang ◽  
Zhihong Tang ◽  
Zhuo Han ◽  
Shuling Shen ◽  
Bin Zhao ◽  
...  

The effect of drying conditions on the structure of graphene based 3D materials is discussed in the manuscript.


Sign in / Sign up

Export Citation Format

Share Document