Nickel-cobalt oxide nanocages derived from cobalt-organic frameworks as electrode materials for electrochemical energy storage with redox electrolyte

2019 ◽  
Vol 319 ◽  
pp. 31-40 ◽  
Author(s):  
Mao-Sung Wu ◽  
Jia-Xin Xu
2016 ◽  
Vol 18 (46) ◽  
pp. 31361-31377 ◽  
Author(s):  
Guanhui Yang ◽  
Yu Zhang ◽  
Yanshan Huang ◽  
Muhammad Imran Shakir ◽  
Yuxi Xu

This review provided an overview of recent progress on composites of conjugated carbonyl compounds and carbon nanomaterials for energy storage.


2019 ◽  
Vol 6 (7) ◽  
pp. 1851-1860 ◽  
Author(s):  
Chengzhen Wei ◽  
Qingyun Chen ◽  
Cheng Cheng ◽  
Ran Liu ◽  
Qiang Zhang ◽  
...  

Mesoporous Ni–Co–Mn sulfide yolk–shell hollow spheres have been prepared via a self-template route and show excellent electrochemical performance in supercapacitors.


2020 ◽  
Vol 44 (25) ◽  
pp. 10592-10603
Author(s):  
Selcuk Poyraz

Nanostructured hybrid electrode materials are prepared in one-step via a MW energy-based approach with promising electrochemical energy storage application performance.


2020 ◽  
Vol 4 (3) ◽  
pp. 729-749 ◽  
Author(s):  
Ji-Shi Wei ◽  
Tian-Bing Song ◽  
Peng Zhang ◽  
Xiao-Qing Niu ◽  
Xiao-Bo Chen ◽  
...  

This review summarizes the recent progress in the design and preparation of multiple electrochemical energy storage devices utilizing carbon dots, and elaborates the positive effects of carbon dots on the resulting electrodes and devices.


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1207 ◽  
Author(s):  
Gong ◽  
Gao ◽  
Hu ◽  
Zhou

Micro/nanostructured spherical materials have been widely explored for electrochemical energy storage due to their exceptional properties, which have also been summarized based on electrode type and material composition. The increased complexity of spherical structures has increased the feasibility of modulating their properties, thereby improving their performance compared with simple spherical structures. This paper comprehensively reviews the synthesis and electrochemical energy storage applications of micro/nanostructured spherical materials. After a brief classification, the concepts and syntheses of micro/nanostructured spherical materials are described in detail, which include hollow, core-shelled, yolk-shelled, double-shelled, and multi-shelled spheres. We then introduce strategies classified into hard-, soft-, and self-templating methods for synthesis of these spherical structures, and also include the concepts of synthetic methodologies. Thereafter, we discuss their applications as electrode materials for lithium-ion batteries and supercapacitors, and sulfur hosts for lithium–sulfur batteries. The superiority of multi-shelled hollow micro/nanospheres for electrochemical energy storage applications is particularly summarized. Subsequently, we conclude this review by presenting the challenges, development, highlights, and future directions of the micro/nanostructured spherical materials for electrochemical energy storage.


Sign in / Sign up

Export Citation Format

Share Document