scholarly journals Measurement of electron-calcium ionization integral cross section using an ion trap with a low-energy, pulsed electron gun

Author(s):  
Łukasz Kłosowski ◽  
Mariusz Piwiński ◽  
Szymon Wójtewicz ◽  
Daniel Lisak
Author(s):  
Tamotsu Ohno

The energy distribution in an electron; beam from an electron gun provided with a biased Wehnelt cylinder was measured by a retarding potential analyser. All the measurements were carried out with a beam of small angular divergence (<3xl0-4 rad) to eliminate the apparent increase of energy width as pointed out by Ichinokawa.The cross section of the beam from a gun with a tungsten hairpin cathode varies as shown in Fig.1a with the bias voltage Vg. The central part of the beam was analysed. An example of the integral curve as well as the energy spectrum is shown in Fig.2. The integral width of the spectrum ΔEi varies with Vg as shown in Fig.1b The width ΔEi is smaller than the Maxwellian width near the cut-off. As |Vg| is decreased, ΔEi increases beyond the Maxwellian width, reaches a maximum and then decreases. Note that the cross section of the beam enlarges with decreasing |Vg|.


Author(s):  
M. Isaacson

In an earlier paper1 it was found that to a good approximation, the efficiency of collection of electrons that had lost energy due to an inner shell excitation could be written as where σE was the total excitation cross-section and σE(θ, Δ) was the integral cross-section for scattering within an angle θ and with an energy loss up to an energy Δ from the excitation edge, EE. We then obtained: where , with P being the momentum of the incident electron of velocity v. The parameter r was due to the assumption that d2σ/dEdΩ∞E−r for energy loss E. In reference 1 it was assumed that r was a constant.


Author(s):  
О. С. Шевченко ◽  
Ю. Н. Ранюк ◽  
А. М. Довбня ◽  
Е. Л. Купленніков

2021 ◽  
Vol 22 (2) ◽  
pp. 647
Author(s):  
Jelena Vukalović ◽  
Jelena B. Maljković ◽  
Karoly Tökési ◽  
Branko Predojević ◽  
Bratislav P. Marinković

Electron interaction with methane molecule and accurate determination of its elastic cross-section is a demanding task for both experimental and theoretical standpoints and relevant for our better understanding of the processes in Earth’s and Solar outer planet atmospheres, the greenhouse effect or in plasma physics applications like vapor deposition, complex plasma-wall interactions and edge plasma regions of Tokamak. Methane can serve as a test molecule for advancing novel electron-molecule collision theories. We present a combined experimental and theoretical study of the elastic electron differential cross-section from methane molecule, as well as integral and momentum transfer cross-sections in the intermediate energy range (50–300 eV). The experimental setup, based on a crossed beam technique, comprising of an electron gun, a single capillary gas needle and detection system with a channeltron is used in the measurements. The absolute values for cross-sections are obtained by relative-flow method, using argon as a reference. Theoretical results are acquired using two approximations: simple sum of individual atomic cross-sections and the other with molecular effect taken into the account.


1979 ◽  
Vol 320 (2) ◽  
pp. 404-412 ◽  
Author(s):  
J.L. Zyskind ◽  
P.D. Parker
Keyword(s):  

2000 ◽  
Vol 112 (10) ◽  
pp. 4536-4552 ◽  
Author(s):  
Rex T. Skodje ◽  
Dimitris Skouteris ◽  
David E. Manolopoulos ◽  
Shih-Huang Lee ◽  
Feng Dong ◽  
...  

The 90° cross-section of the reaction 3 1 H( d , n ) 4 2 He has been investigated over the energy range 100 to 200 keV (energy of bombarding triton) using the 200 keV accelerating set of the establishment. Two methods have been used. As a preliminary experiment the yield of alpha-particles from a thick heavy-ice target was measured per unit charge of incident beam, as a function of deuteron energy, and the variation of cross-section deduced from the gradient of this excitation curve and the range energy relation for tritons in heavy water. Secondly, a comparison was made between the yield of alpha-particles from the D-T reaction and the yield of protons from the D-D reaction when a beam containing both deuterons and tritons was passed through a heavy-water vapour target. (The energy loss in this target was calculated as only a few hundred electron volts.) To do this a simultaneous observation was made of the protons and alpha-particles using the same counter. The values obtained for the cross-section have been compared with the resonance formulae given by Bretscher & French (1949) and by Tascbek, Everhart, Gittings, Hemmendinger & Jarvis (1948) and have been found to be in disagreement with formulae of this type. From considerations of the absolute magnitude of the cross-section it has been deduced that no conventional theory postulating reaction at a distance equal to the sum of the nuclear radii (cf. Konopinski & Teller 1948) will be able to explain this reaction. The evidence for a low-energy resonance (Allan & Poole 1949) is thought to be inconclusive.


2015 ◽  
Vol 166 (1-4) ◽  
pp. 15-18 ◽  
Author(s):  
E. Schmitt ◽  
W. Friedland ◽  
P. Kundrát ◽  
M. Dingfelder ◽  
A. Ottolenghi

Sign in / Sign up

Export Citation Format

Share Document