Indoor environmental conditions in urban and rural homes with older people during heating season: A case in cold region, China

2018 ◽  
Vol 167 ◽  
pp. 334-346 ◽  
Author(s):  
Guangtao Fan ◽  
Jingchao Xie ◽  
Hiroshi Yoshino ◽  
U. Yanagi ◽  
Kenichi Hasegawa ◽  
...  
2019 ◽  
Vol 198 ◽  
pp. 61-74 ◽  
Author(s):  
Huibo Zhang ◽  
Ya Chen ◽  
Jingwen Rui ◽  
Hiroshi Yoshino ◽  
Jinfeng Zhang ◽  
...  

2014 ◽  
Vol 590 ◽  
pp. 599-603
Author(s):  
Teer Andrus Koiv ◽  
Mariin Ling ◽  
Kaspar Tennokese

This article gives an overview of the study on using the air-to-water heat pump (A&WHP) for heating buildings in cold climate regions. The study was conducted in a relatively cold region (59°N), where the ambient temperature during the winter usually falls below-20°C. Despite the fact the COP of the air-to-water heat pump in the winter period was 2.5 on average and during the heating season of 2013/2014 the additional energy requirement was less than 3%.


2020 ◽  
Vol 224 ◽  
pp. 110274 ◽  
Author(s):  
Mariam Itani ◽  
Nesreen Ghaddar ◽  
Kamel Ghali ◽  
Abdelaziz Laouadi

Author(s):  
Veronica Soebarto ◽  
Terence Williamson ◽  
Andrew Carre ◽  
Larissa Arakawa Martins

2022 ◽  
Vol 12 (2) ◽  
pp. 855
Author(s):  
Jing Zhao ◽  
Dehan Liu ◽  
Shilei Lu

The application of attached sunspace passive solar heating systems (ASPSHS) for farmhouses can improve building performance, reduce heating energy consumption and carbon dioxide emissions. In order to take better use of the attached sunspace to prevent heat transfer or promote natural ventilation, this paper presented a zero-state response control strategy for the opening and closing time of active interior window in the ASPSHS. In order to verify the application of this strategy, an attached sunspace was built in an actual farmhouse. A natural ventilation heat exchange model was built based on the farmhouse with attached sunspace. The proposed zero-state response control strategy was implemented in TRNSYS software. Field measurement in living lab was carried out to inspect the distribution of the thermal environment in the farmhouse with attached sunspace under a zero-state response control strategy in the cold region of northern China. The experimental results show that, even under −5.0–2.5 °C ambient temperature, the application of zero-state response control strategy effectively increases the internal temperature to an average of 25.45 °C higher than the outside, with 23% indoor discernible temperature differential in the sample daytime. The whole-season heating performance was evaluated by simulating the model for the heating season in 2020–2021. The simulation demonstrates that the ASPSHS under zero-state response control strategy can maintain a basic indoor temperature of 14 °C for 1094 h during the heating season, with a daytime heating guarantee rate of 73.33%, thus ensuring higher indoor heating comfort during the day. When compared to a farmhouse with an attached sunspace under the zero-state response control strategy, the energy savings rate can be enhanced by 20.88%, and carbon emissions can be reduced by 51.73%. Overall, the attached sunspace with the zero-state response control strategy can effectively increase the indoor temperature when the solar radiation is intensive and create a suitable thermal environment for the farmhouse in the cold region of northern China.


2014 ◽  
Vol 672-674 ◽  
pp. 113-116 ◽  
Author(s):  
Kun Ru Ma ◽  
Lu Jin ◽  
Li Juan Yan

This paper proposes a solar-air compound source heat pump system, for the rural residential area of Hebei and independent villas. The system can realize heating in winter and refrigerating in summer, and demand of heat water. This paper simulates and analyzes the winter heating situation of this system. The entire heating season, heat collecting efficiency of the solar collector is 0.45 in average, and solar guarantee rate is 46%. Solar-air compound source heat pump system average COP is 4.5 in the heating season, increased by 26% than the air source heat pump system run separately , and the fluctuation range is small. Throughout the heating season, the contribution of solar collectors is 59%, the contribution of air source heat pump is 41%.


Author(s):  
K. Ohi ◽  
M. Mizuno ◽  
T. Kasai ◽  
Y. Ohkura ◽  
K. Mizuno ◽  
...  

In recent years, with electron microscopes coming into wider use, their installation environments do not necessarily give their performance full play. Their environmental conditions include air-conditioners, magnetic fields, and vibrations. We report a jointly developed entirely new vibration isolator which is effective against the vibrations transmitted from the floor.Conventionally, large-sized vibration isolators which need the digging of a pit have been used. These vibration isolators, however, are large present problems of installation and maintenance because of their large-size.Thus, we intended to make a vibration isolator which1) eliminates the need for changing the installation room2) eliminates the need of maintenance and3) are compact in size and easily installable.


Sign in / Sign up

Export Citation Format

Share Document