Vibration Isolator System for Electron Microscope

Author(s):  
K. Ohi ◽  
M. Mizuno ◽  
T. Kasai ◽  
Y. Ohkura ◽  
K. Mizuno ◽  
...  

In recent years, with electron microscopes coming into wider use, their installation environments do not necessarily give their performance full play. Their environmental conditions include air-conditioners, magnetic fields, and vibrations. We report a jointly developed entirely new vibration isolator which is effective against the vibrations transmitted from the floor.Conventionally, large-sized vibration isolators which need the digging of a pit have been used. These vibration isolators, however, are large present problems of installation and maintenance because of their large-size.Thus, we intended to make a vibration isolator which1) eliminates the need for changing the installation room2) eliminates the need of maintenance and3) are compact in size and easily installable.

Author(s):  
Gigih Priyandoko

Many vibration isolators, for instance, passive vehicle mounting device, have fixed stiffness. This article presents the development of the adjustable stiffness engine mounting magnetorheological elastomers (MREs) based to reduce vibration. The development of MREs vibration isolator is to design of engine mounting first step, for next step is to simulate the electromagnetic circuit. The housing material selection and MREs thickness were considered to equip sufficient, uniform magnetic fields to change the stiffness. The innovative magnetic circuit design includes the type and size of the wire and the number of the coil turns to obtain the best magnetic fields to eliminate vibration. Finite Element Method Magnetics (FEMM) software was utilized to show the effectiveness of the electromagnetic circuit in generating magnetic fields through the MREs. Finally, various current input influence to the MREs vibration isolator is investigated. The higher current input is more useful to eliminate vibration using MREs isolator system.


Author(s):  
J. S. Lally ◽  
R. Evans

One of the instrumental factors often limiting the resolution of the electron microscope is image defocussing due to changes in accelerating voltage or objective lens current. This factor is particularly important in high voltage electron microscopes both because of the higher voltages and lens currents required but also because of the inherently longer focal lengths, i.e. 6 mm in contrast to 1.5-2.2 mm for modern short focal length objectives.The usual practice in commercial electron microscopes is to design separately stabilized accelerating voltage and lens supplies. In this case chromatic aberration in the image is caused by the random and independent fluctuations of both the high voltage and objective lens current.


Author(s):  
R. C. Moretz ◽  
D. F. Parsons

Short lifetime or total absence of electron diffraction of ordered biological specimens is an indication that the specimen undergoes extensive molecular structural damage in the electron microscope. The specimen damage is due to the interaction of the electron beam (40-100 kV) with the specimen and the total removal of water from the structure by vacuum drying. The lower percentage of inelastic scattering at 1 MeV makes it possible to minimize the beam damage to the specimen. The elimination of vacuum drying by modification of the electron microscope is expected to allow more meaningful investigations of biological specimens at 100 kV until 1 MeV electron microscopes become more readily available. One modification, two-film microchambers, has been explored for both biological and non-biological studies.


Author(s):  
G.K.W. Balkau ◽  
E. Bez ◽  
J.L. Farrant

The earliest account of the contamination of electron microscope specimens by the deposition of carbonaceous material during electron irradiation was published in 1947 by Watson who was then working in Canada. It was soon established that this carbonaceous material is formed from organic vapours, and it is now recognized that the principal source is the oil-sealed rotary pumps which provide the backing vacuum. It has been shown that the organic vapours consist of low molecular weight fragments of oil molecules which have been degraded at hot spots produced by friction between the vanes and the surfaces on which they slide. As satisfactory oil-free pumps are unavailable, it is standard electron microscope practice to reduce the partial pressure of organic vapours in the microscope in the vicinity of the specimen by using liquid-nitrogen cooled anti-contamination devices. Traps of this type are sufficient to reduce the contamination rate to about 0.1 Å per min, which is tolerable for many investigations.


Author(s):  
George Christov ◽  
Bolivar J. Lloyd

A new high intensity grid cap has been designed for the RCA-EMU-3 electron microscope. Various parameters of the new grid cap were investigated to determine its characteristics. The increase in illumination produced provides ease of focusing on the fluorescent screen at magnifications from 1500 to 50,000 times using an accelerating voltage of 50 KV.The EMU-3 type electron gun assembly consists of a V-shaped tungsten filament for a cathode with a thin metal threaded cathode shield and an anode with a central aperture to permit the beam to course the length of the column. The cathode shield is negatively biased at a potential of several hundred volts with respect to the filament. The electron beam is formed by electrons emitted from the tip of the filament which pass through an aperture of 0.1 inch diameter in the cap and then it is accelerated by the negative high voltage through a 0.625 inch diameter aperture in the anode which is at ground potential.


Author(s):  
P. A. Marsh ◽  
T. Mullens ◽  
D. Price

It is possible to exceed the guaranteed resolution on most electron microscopes by careful attention to microscope parameters essential for high resolution work. While our experience is related to a Philips EM-200, we hope that some of these comments will apply to all electron microscopes.The first considerations are vibration and magnetic fields. These are usually measured at the pre-installation survey and must be within specifications. It has been our experience, however, that these factors can be greatly influenced by the new facilities and therefore must be rechecked after the installation is completed. The relationship between the resolving power of an EM-200 and the maximum tolerable low frequency interference fields in milli-Oerstedt is 10 Å - 1.9, 8 Å - 1.4, 6 Å - 0.8.


Author(s):  
M.A. O’Keefe ◽  
J. Taylor ◽  
D. Owen ◽  
B. Crowley ◽  
K.H. Westmacott ◽  
...  

Remote on-line electron microscopy is rapidly becoming more available as improvements continue to be developed in the software and hardware of interfaces and networks. Scanning electron microscopes have been driven remotely across both wide and local area networks. Initial implementations with transmission electron microscopes have targeted unique facilities like an advanced analytical electron microscope, a biological 3-D IVEM and a HVEM capable of in situ materials science applications. As implementations of on-line transmission electron microscopy become more widespread, it is essential that suitable standards be developed and followed. Two such standards have been proposed for a high-level protocol language for on-line access, and we have proposed a rational graphical user interface. The user interface we present here is based on experience gained with a full-function materials science application providing users of the National Center for Electron Microscopy with remote on-line access to a 1.5MeV Kratos EM-1500 in situ high-voltage transmission electron microscope via existing wide area networks. We have developed and implemented, and are continuing to refine, a set of tools, protocols, and interfaces to run the Kratos EM-1500 on-line for collaborative research. Computer tools for capturing and manipulating real-time video signals are integrated into a standardized user interface that may be used for remote access to any transmission electron microscope equipped with a suitable control computer.


Author(s):  
H. Weiland ◽  
D. P. Field

Recent advances in the automatic indexing of backscatter Kikuchi diffraction patterns on the scanning electron microscope (SEM) has resulted in the development of a new type of microscopy. The ability to obtain statistically relevant information on the spatial distribution of crystallite orientations is giving rise to new insight into polycrystalline microstructures and their relation to materials properties. A limitation of the technique in the SEM is that the spatial resolution of the measurement is restricted by the relatively large size of the electron beam in relation to various microstructural features. Typically the spatial resolution in the SEM is limited to about half a micron or greater. Heavily worked structures exhibit microstructural features much finer than this and require resolution on the order of nanometers for accurate characterization. Transmission electron microscope (TEM) techniques offer sufficient resolution to investigate heavily worked crystalline materials.Crystal lattice orientation determination from Kikuchi diffraction patterns in the TEM (Figure 1) requires knowledge of the relative positions of at least three non-parallel Kikuchi line pairs in relation to the crystallite and the electron beam.


2021 ◽  
Vol 54 ◽  
Author(s):  
Deryck J. Mills

Abstract Cryo-electron microscopy (cryo-EM) has become the technique of choice for structural biology of macromolecular assemblies, after the ‘resolution revolution’ that has occurred in this field since 2012. With a suitable instrument, an appropriate electron detector and, last but not least, a cooperative sample it is now possible to collect images from which macromolecular structures can be determined to better than 2 Å resolution, where reliable atomic models can be built. By electron tomography and sub-tomogram averaging of cryo-samples, it is also possible to reconstruct subcellular structures to sub-nanometre resolution. This review describes the infrastructure that is needed to achieve this goal. Ideally, a cryo-EM lab will have a dedicated 300 kV electron microscope for data recording and a 200 kV instrument for screening cryo-samples, both with direct electron detectors, and at least one 120 kV EM for negative-stain screening at room temperature. Added to this should be ancillary equipment for specimen preparation, including a light microscope, carbon coater, plasma cleaner, glow discharge unit, a device for fast, robotic sample freezing, liquid nitrogen storage Dewars and a ready supply of clean liquid nitrogen. In practice, of course, the available budget will determine the number and types of microscopes and how elaborate the lab can be. The cryo-EM lab should be designed with adequate space for the electron microscopes and ancillary equipment, and should allow for sufficient storage space. Each electron microscope room should be connected to the image-processing computers by fibre-optic cables for the rapid transfer of large datasets. The cryo-EM lab should be overseen by a facility manager whose responsibilities include the day-to-day tasks to ensure that all microscopes are operating perfectly, organising service and repairs to minimise downtime, and controlling the budget. Large facilities will require additional support staff who help to oversee the operation of the facility and instruct new users.


Neuroforum ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lisa Spiecker ◽  
Bo Leberecht ◽  
Corinna Langebrake ◽  
Malien Laurien ◽  
Shambhavi Rajendra Apte ◽  
...  

Abstract Every year, billions of animals leave their home range and start seasonal migrations in order to find more favorable resources and to escape harsh environmental conditions. These round trips often span thousands of kilometers. To successfully navigate along their route, animals rely on various external references. While landmarks and celestial cues like stars or the sun are easy to imagine as guidance on these journeys, using the geomagnetic field for orientation is more elusive. The geomagnetic field is an omnipresent cue, which can be sensed and relied upon by many animals, even when visual cues are sparse. How magnetic fields can be perceived seems to vary between birds and fish. While birds seem to use a mechanism based on the quantum mechanical properties of electron spins, fish may have evolved a compass similar in its function to the technical devises developed by humans. How these mechanisms work precisely and how they are integrated are research questions addressed in SFB 1372.


Sign in / Sign up

Export Citation Format

Share Document